Bachelorstudiengang Bauingenieurwesen
PO 2021

Modulhandbuch
Modulbeschreibungen
Curriculum
Leitfaden für Prüfungen
Allgemeine Informationen

SoSe 2022 Stand: 01.04.2022
Änderungen:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-W28</td>
<td>Planen, Sprechen, Schreiben: Projektmanagement und wissenschaftliches Arbeiten im Ingenieurwesen</td>
<td>neu</td>
</tr>
</tbody>
</table>

Achtung!
Lehrveranstaltungen des ersten Bachelor- und Master-Semesters beginnen im Wintersemester 21/22 nach dem neuen BI-Curriculum (PO 21), die Lehrveranstaltungen der folgenden Semester sukzessive danach. Prüfungen nach den alten BI-Prüfungsordnungen (PO 13) werden noch bis einschl. Wintersemester 2023/24 (Master) bzw. 2024/25 (Bachelor) angeboten.

<table>
<thead>
<tr>
<th>Modulkürzel</th>
<th>Modultitel</th>
<th>Angeboten ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-01</td>
<td>Höhere Mathematik A</td>
<td>WiSe 2021/22</td>
</tr>
<tr>
<td>BI-02</td>
<td>Mechanik A</td>
<td>WiSe 2021/22</td>
</tr>
<tr>
<td>BI-03</td>
<td>Bauphysik</td>
<td>WiSe 2021/22</td>
</tr>
<tr>
<td>BI-04</td>
<td>Baustofftechnik</td>
<td>WiSe 2021/22</td>
</tr>
<tr>
<td>BI-05</td>
<td>Baukonstruktionen</td>
<td>SoSe 2022</td>
</tr>
<tr>
<td>BI-06</td>
<td>Höhere Mathematik B</td>
<td>SoSe 2022</td>
</tr>
<tr>
<td>BI-07</td>
<td>Mechanik B</td>
<td>SoSe 2022</td>
</tr>
<tr>
<td>BI-08</td>
<td>Ingenieurinformatik</td>
<td>SoSe 2022</td>
</tr>
<tr>
<td>BI-09</td>
<td>Höhere Mathematik C</td>
<td>WiSe 2022/23</td>
</tr>
<tr>
<td>BI-10</td>
<td>Strömungsmechanik</td>
<td>WiSe 2022/23</td>
</tr>
<tr>
<td>BI-11</td>
<td>Statik und Tragwerkslehre A</td>
<td>WiSe 2022/23</td>
</tr>
<tr>
<td>BI-12</td>
<td>Bodenmechanik und Grundbau</td>
<td>WiSe 2022/23</td>
</tr>
<tr>
<td>BI-13</td>
<td>Hydrologie und Wasserwirtschaft</td>
<td>WiSe 2022/23</td>
</tr>
<tr>
<td>BI-14</td>
<td>Verkehrsplanung und -technik</td>
<td>WiSe 2022/23</td>
</tr>
<tr>
<td>BI-15</td>
<td>Statik und Tragwerkslehre B</td>
<td>SoSe 2023</td>
</tr>
<tr>
<td>BI-16</td>
<td>Stahlbeton- und Spannbetonbau</td>
<td>SoSe 2023</td>
</tr>
<tr>
<td>BI-17</td>
<td>Stahl- und Holzbau</td>
<td>SoSe 2023</td>
</tr>
<tr>
<td>BI-18</td>
<td>Siedlungswasserwirtschaft</td>
<td>SoSe 2023</td>
</tr>
<tr>
<td>BI-19</td>
<td>Straßenbau und -erhaltung</td>
<td>WiSe 2023/24</td>
</tr>
<tr>
<td>BI-20</td>
<td>Baubetrieb und Bauverfahrenstechnik</td>
<td>WiSe 2023/24</td>
</tr>
<tr>
<td>BI-21</td>
<td>Building Information Modeling</td>
<td>SoSe 2024</td>
</tr>
<tr>
<td>Module</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Arbeitssicherheit I – Baustellenorganisation (BI-W21)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Arbeitssicherheit II - Arbeitsschutzfachlicher Theoriekurs (BI-W22)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BWL für Ingenieure (W08)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Bachelorarbeit BI (BI-BA)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Baubetrieb und Bauverfahrenstechnik (BI-20/UI-B12)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Baukonstruktionen (BI-05)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Bauphysik (BI-03/UI-B02)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Baustofftechnik (BI-04)</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Bauvertrags- und Umweltrecht (W07)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Bodenmechanik und Grundbau (BI-12)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Building Information Modeling (BI-21)</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Hydrologie und Wasserwirtschaft (BI-13/UI-B04)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Höhere Mathematik A (BI-01/UI-01)</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Höhere Mathematik B (BI-06/UI-06)</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Höhere Mathematik C (BI-09/UI-11)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Ingenieurinformatik (BI-08/UI-08)</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Mechanik A (BI-02/UI-02)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Mechanik B (BI-07)</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Physik (W01)</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Planen, Sprechen, Schreiben: Projektmanagement und wissenschaftliches Arbeiten im Ingenieurwesen (BI-W28)</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Projektarbeit (W09)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Siedlungswasserwirtschaft (BI-18)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Stahl- und Holzbau (BI-17)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Stahlbeton- und Spannbetonbau (BI-16)</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Statik und Tragwerkslehre A (BI-11/UI-B03)</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Statik und Tragwerkslehre B (BI-15)</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Straßenbau und -erhaltung (BI-19)</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Strömungsmechanik (BI-10/UI-10)</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Technical English for Civil Engineering I (W04)</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Technical English for Civil Engineering II (W05)</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Technische Mikrobiologie (UI-12)</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Umwelttechnik und Ökologie (W06)</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Verkehrsplanung und -technik (BI-14)</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Vermessungskunde (W03)</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Werkstoffchemie (W02) ... 75
Übersicht nach Modulgruppen

1) BSc BI Pflichtmodule, ECTS: 156

<table>
<thead>
<tr>
<th>Modul</th>
<th>ECTS</th>
<th>Semester</th>
<th>Beginnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhere Mathematik A (BI-01/UI-01, 8 ECTS, jedes Wintersemester)</td>
<td>32</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Mechanik A (BI-02/UI-02, 9 ECTS, jedes Wintersemester)</td>
<td>40</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Bauphysik (BI-03/UI-B02, 5 ECTS, jedes Wintersemester)</td>
<td>19</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Baustofftechnik (BI-04, 10 ECTS, siehe Lehrveranstaltung(en))</td>
<td>21</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Baukonstruktionen (BI-05, 5 ECTS, jedes Sommersemester)</td>
<td>17</td>
<td>Sommersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Höhere Mathematik B (BI-06/UI-06, 8 ECTS, jedes Sommersemester)</td>
<td>34</td>
<td>Sommersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Mechanik B (BI-07, 8 ECTS, jedes Sommersemester)</td>
<td>42</td>
<td>Sommersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Ingenieurinformatik (BI-08/UI-08, 5 ECTS, jedes Sommersemester)</td>
<td>38</td>
<td>Sommersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Höhere Mathematik C (BI-09/UI-11, 5 ECTS, jedes Wintersemester)</td>
<td>36</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Strömungsmechanik (BI-10/UI-10, 5 ECTS, jedes Wintersemester)</td>
<td>62</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Statik und Tragwerkslehre A (BI-11/UI-B03, 5 ECTS, jedes Wintersemester)</td>
<td>56</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Bodenmechanik und Grundbau (BI-12, 8 ECTS, jedes Wintersemester)</td>
<td>25</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Hydrologie und Wasserwirtschaft (BI-13/UI-B04, 7 ECTS, siehe Lehrveranstaltung(en))</td>
<td>29</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Verkehrsplanung und -technik (BI-14, 8 ECTS, siehe Lehrveranstaltung(en))</td>
<td>71</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Statik und Tragwerkslehre B (BI-15, 8 ECTS, jedes Sommersemester)</td>
<td>58</td>
<td>Sommersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Stahlbeton- und Spannbetonbau (BI-16, 12 ECTS, siehe Lehrveranstaltung(en))</td>
<td>54</td>
<td>Sommersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Stahl- und Holzbau (BI-17, 12 ECTS, siehe Lehrveranstaltung(en))</td>
<td>52</td>
<td>Sommersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Siedlungswasserwirtschaft (BI-18, 8 ECTS, siehe Lehrveranstaltung(en))</td>
<td>50</td>
<td>Sommersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Straßenbau und -erhaltung (BI-19, 7 ECTS, jedes Wintersemester)</td>
<td>60</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Baubetrieb und Bauverfahrenstechnik (BI-20/UI-B12, 8 ECTS, siehe Lehrveranstaltung(en))</td>
<td>15</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
<tr>
<td>Building Information Modeling (BI-21, 5 ECTS, jedes Sommersemester)</td>
<td>27</td>
<td>Sommersemester</td>
<td>2020-Studium</td>
</tr>
</tbody>
</table>

2) BSc BI Wahlmodule, ECTS: 12

<table>
<thead>
<tr>
<th>Modul</th>
<th>ECTS</th>
<th>Semester</th>
<th>Beginnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik (W01, 4 ECTS, jedes Wintersemester)</td>
<td>44</td>
<td>Wintersemester</td>
<td>2020-Studium</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Werkstoffchemie (W02, 2 ECTS, jedes Wintersemester) .. 75
Vermessungskunde (W03, 6 ECTS, siehe Lehrveranstaltung(en)) ... 73
Technical English for Civil Engineering I (W04, 5 ECTS, jedes Wintersemester) ... 64
Technical English for Civil Engineering II (W05, 6 ECTS, jedes Sommersemester) ... 66
Umwelttechnik und Ökologie (W06, 3 ECTS, jedes Sommersemester) ... 70
Technische Mikrobiologie (UI-12, 5 ECTS, jedes Sommersemester) ... 68
Bauvertrags- und Umweltrecht (W07, 2 ECTS, jedes Sommersemester) .. 23
Arbeitssicherheit I – Baustellenorganisation (BI-W21, 2 ECTS, jedes Sommersemester) 7
Arbeitssicherheit II - Arbeitsschutzfachlicher Theoriekurs (BI-W22, 2 ECTS, jedes Sommersemester) 9
BWL für Ingenieure (W08, 4 ECTS, jedes Sommersemester) .. 11
Projektarbeit (W09, 6 ECTS, jedes Semester) .. 48
Planen, Sprechen, Schreiben: Projektmanagement und wissenschaftliches Arbeiten im Ingenieurwesen (BI-W28, 3 ECTS, jedes Semester) ... 46

3) BSc BI Bachelorarbeit, ECTS: 12

Stellenwert der Note für die Endnote
FAK = 2,0
DIV = 192

Bachelorarbeit BI (BI-BA, 12 ECTS, jedes Semester) ... 13
Arbeitssicherheit I – Baustellenorganisation
Safety at Work/Site organisation

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-W21</td>
<td>2 LP</td>
<td>60 h</td>
<td>6. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Arbeitssicherheit I – Baustellenorganisation</td>
<td>a) 2 SWS (30 h)</td>
<td>a) 30 h</td>
<td>a) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r
Prof. Dr.-Ing. Markus Thewes
a) Prof. Dr.-Ing. Markus Thewes

Teilnahmeverworaussetzungen

Lernziele/Kompetenzen
Die Studierenden
- entwickeln ein grundständiges Verständnis für die Bedeutung der Arbeitssicherheit und des Gesundheitsschutzes auf Baustellen,
- werden an das Basiswissen zu entsprechenden vorbeugenden Maßnahmen bei der Bauplanung und Bauausführung herangeführt,
- erkennen die besondere Bedeutung der Bauleitung in rechtlicher Hinsicht,
- lernen Fragestellungen aus diesen Bereichen praxisnah zu bearbeiten Qualität von Berechnungsverfahren und Ergebnissen,
- können sich kritisch mit Fragen der Arbeitssicherheit auseinandersetzen und diese Aufgabe in der Bauorganisation umsetzen

Inhalte

a)
Die Vorlesung behandelt umfassend das Basiswissen der Arbeitssicherheit. Hierzu gehören:
- Grundlagen der Arbeitssicherheit
- Rechtliche und versicherungstechnische Aspekte
- Basiswissen zu Unfallverhütungsvorschriften für den Hoch- und Tiefbau
- Besonderheiten bei Druckluft- und Sprengarbeiten

Lehrformen / Sprache
a) Vorlesung (2 SWS) / Deutsch

Prüfungsformen
- Klausur 'Arbeitssicherheit I – Baustellenorganisation' (60 Min., Anteil der Modulnote 100 %, Die Klausur findet im Sommersemester vorlesungsnah nach Beendigung der Veranstaltung noch während der Vorlesungszeit statt.)

Voraussetzungen für die Vergabe von Credits
- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls
- BSc Bauingenieurwesen
- BSc Umweltingenieurwesen
- MSc Bauingenieurwesen
• MSc Umweltingenieurwesen

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an der Gesamtnote [%] = 2 * 100 * FAK / DIV</td>
</tr>
<tr>
<td>FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).</td>
</tr>
<tr>
<td>DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit dem Modul W21 (Arbeitssicherheit I) können die Studierenden den ersten Teil der theoretischen Ausbildung zum SiGe-Koordinator hinsichtlich der arbeitsschutzfachlichen Kenntnisse (SiGe-Arbeitsschutz -arbeitsschutzfachliche Kenntnisse gemäß RAB 30, Anlage B) erwerben.</td>
</tr>
</tbody>
</table>
Modul Arbeitssicherheit II - Arbeitsschutzfachlicher Theoriekurs

Industrial safety II - theory course of industrial safety

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-W22</td>
<td>2 LP</td>
<td>60 h</td>
<td>6. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 2 SWS (30 h)</td>
<td>a) 30 h</td>
<td>a) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr.-Ing. Markus Thewes

a) Prof. Dr.-Ing. Markus Thewes

Teilnahmevoraussetzungen

Empfohlene Vorkenntnisse: Die Teilnahme am Modul Arbeitssicherheit I wird empfohlen.

Lernziele/Kompetenzen

Die Studierenden

- entwickeln ein fortgeschrittenes Verständnis für die Bedeutung der Arbeitssicherheit und des Gesundheitsschutzes auf Baustellen,
- erwerben das Basiswissen zu entsprechenden vorbeugenden Maßnahmen bei der Bauplanung und Bauausführung,
- erkennen die besondere Bedeutung der Bauleitung in rechtlicher Hinsicht,
- lernen Fragestellungen aus diesen Bereichen praxisnah zu bearbeiten Qualität von Berechnungsverfahren und Ergebnissen,
- können sich kritisch mit Fragen der Arbeitssicherheit auseinandersetzen und diese Aufgabe in der Bauorganisation umsetzen

Inhalte

a)

Die Vorlesung behandelt umfassend die Bereiche der Arbeitssicherheit. Hierzu gehören:

- Vertiefung rechtlicher und versicherungstechnischer Aspekte
- Vertieftes Wissen zu Unfallverhütungsvorschriften für den Hoch- und Tiefbau
- Brandschutz in der Bauphase
- Grundlagen der SiGE-Planung und SiGe-Koordination
- Aufgaben des SiGE-Koordinators in Planung und Bauausführung

Lehrformen / Sprache

a) Vorlesung (2 SWS) / Deutsch

Prüfungsformen

- Klausur 'Arbeitssicherheit II / SIGEKO' (60 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc. Bauingenieurwesen
- BSc. Umwelt ingenieurwesen
- MSc. Bauingenieurwesen
MSc. Umweltingenieurwesen

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an der Gesamtnote [%] = 2 * 100 * FAK / DIV</td>
</tr>
<tr>
<td>FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).</td>
</tr>
<tr>
<td>DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.</td>
</tr>
</tbody>
</table>

Sonstige Informationen

Hinweis:

Mit dem Modul Arbeitssicherheit I können die Studierenden den ersten Teil der theoretischen Ausbildung zum SiGe-Koordinator hinsichtlich der arbeitsschutzfachlichen Kenntnisse (SiGe-Arbeitsschutz - arbeitsschutzfachliche Kenntnisse gemäß RAB 30, Anlage B) erwerben. Aufbauend auf dem Modul Arbeitssicherheit 1 wird der zweite Teil der arbeitsschutzfachlichen Kenntnisse in diesem Master-Modul gelehrt. Für die vollständige theoretische Ausbildung zum SiGeKo ist zusätzlich zu den beiden Ausbildungsteilen zu arbeitsschutzfachlichen Kenntnissen noch eine Ausbildung hinsichtlich spezieller Koordinatorenkenntnisse (gemäß RAB 30, Anlage C) erforderlich. Diese ist nicht Bestandteil der hier angebotenen Module Arbeitsicherheit I und II.
BWL für Ingenieure

Management for Engineers

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>W08</td>
<td>4 LP</td>
<td>120 h</td>
<td>6. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) BWL für Ingenieure</td>
<td>a) 3 SWS (45 h)</td>
<td>a) 75 h</td>
<td>a) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr. Marion Steven

a) Prof. Dr. Marion Steven

Teilnahmevoraussetzungen

Lernziele/Kompetenzen

Die Studierenden haben ein fundiertes betriebswirtschaftliches Grundlagenwissen erworben und können

- ökonomisch fundierte Entscheidungen treffen
- sich mit kaufmännisch ausgebildeten Gesprächspartnern und -partnerinnen kompetent verständigen
- sich in die im Berufsleben am Häufigsten auftretenden ökonomischen Sachverhalte fachlich fundiert einarbeiten
- die Vorteilhaftigkeit vorliegender Lösungsansätze beurteilen
- eigene Lösungsvorschläge erarbeiten
- auf das vernetzte Wissen aus verschiedenen Teilgebieten der Betriebswirtschaftslehre zugreifen

Inhalte

a)

Lehrformen / Sprache

a) Übung (1 SWS) / Vorlesung (2 SWS) / Deutsch

Prüfungsformen

- Klausur 'BWL für Ingenieure' (90 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc Bauingenieurwesen
- BSc Umwelt ingenieurwesen

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = 4 * 100 * FAK / DIV

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
<table>
<thead>
<tr>
<th>DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonstige Informationen</td>
</tr>
</tbody>
</table>
Bachelorarbeit BI

Bachelor’s Thesis

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-BA</td>
<td>12 LP</td>
<td>360 h</td>
<td>6. Sem.</td>
<td>3 Monate</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Bachelorarbeit BI</td>
<td>a) 360 h</td>
<td></td>
<td>a) jedes Sem.</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

Alle Professorinnen und Professoren des Studiengangs

a) Alle Professorinnen und Professoren des Studiengangs

Teilnahmevoraussetzungen

Zur Bachelorarbeit kann zugelassen werden, wer erfolgreich abgeschlossene Module im Umfang von mindestens 120 LP nachweisen kann und den Nachweis über das abgeleistete 8-wöchige Berufspraktikum erbracht hat.

Lernziele/Kompetenzen

Die Studierenden

- können innerhalb einer vorgegebenen Frist von 3 Monaten (360 Arbeitsstunden) ein Thema aus dem Bereich des Bauingenieurwesens mit wissenschaftlichen Methoden selbstständig erarbeiten,
- sind in der Lage internationale Literatur zu recherchieren und diese zu verstehen,
- können bei der dazugehörigen Präsentation, fachliche Themen passend aufarbeiten und verständlich präsentieren,
- werden während der Bearbeitung der Bachelorarbeit notwendige Fachkenntnisse für den Übergang ins Berufsleben erwerben.

Inhalte

a)

Lehrformen / Sprache

a) Abschlussarbeit / Deutsch / Englisch

Prüfungsformen

- Abschlussarbeit 'Bachelorarbeit BI' (360 Std., Anteil der Modulnote 100 %, mit abschließender Präsentation)

Voraussetzungen für die Vergabe von Credits

- Bestandene Abschlussarbeit
- Abgelegte Präsentation

Verwendung des Moduls

- BSc Bauingenieurwesen

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = 12 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

<table>
<thead>
<tr>
<th>Sonstige Informationen</th>
<th></th>
</tr>
</thead>
</table>
Modul Baubetrieb und Bauverfahrenstechnik

Construction Technology and Management

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-20/UI-B12</td>
<td>8 LP</td>
<td>240 h</td>
<td>5./6. Sem.</td>
<td>2 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

a) Baubetrieb und Bauverfahrenstechnik I
b) Baubetrieb und Bauverfahrenstechnik II

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 4 SWS (60 h)</td>
<td>a) 90 h</td>
<td>a) jedes WiSe</td>
</tr>
<tr>
<td>b) 2 SWS (30 h)</td>
<td>b) 60 h</td>
<td>b) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr.-Ing. Markus Thewes
a) Prof. Dr.-Ing. Markus Thewes
b) Prof. Dr.-Ing. Markus Thewes

Teilnahmeveranlassungen

Empfohlene Vorkenntnisse: Grundkenntnisse in Baustofftechnik, Baukonstruktionen, Bauphysik, Statik und Tragwerkslehre, Stahlbeton- und Spannbetonbau, Stahl- und Holzbau sowie Grundbau und Bodenmechanik

Lernziele/Kompetenzen

- Grundlegende Kenntnisse des Baubetriebs und der Bauverfahrenstechnik sowie deren Auswirkungen auf die Planung, Konstruktion und Ausführung von Bauvorhaben,
- Kenntnisse, zur Organisation, Durchführung und Leitung von Bauvorhaben in der Bauleitung,
- Kenntnisse für das Lösen von Standardaufgaben aus den Bereichen des Projekt- und Baumanagements,

Inhalte

a)
Die Vorlesung behandelt das Basiswissen des Projektmanagements und der Ausschreibung, Vergabe und Abrechnung im Baubetrieb. Hierzu gehören:

- Besonderheiten der Bauproduktion
- Am Bau Beteiligte
- Allgemeine Bauorganisation
- Bauablauf
- Leistungsphasen gemäß HOAI
- Grundlagen der Aufgabenbereiche Ausschreibung, Vergabe, Aufmaß und Abrechnung
- Grundlagen der Bauverträge und Vertragsformen
- Grundzüge der VOB A, B, C, öffentliches Baurecht
- Grundlagen der Bauablaufplanung
- Grundlagen der Bauverfahrenstechnik Hochbau, konventionelle Bauverfahren
- Grundlagen der Bauverfahrenstechnik Fertigteilbau
- Grundlegende Kalkulationsverfahren im Baubetrieb, Kostenermittlung

b)
Die Vorlesung (als Blockveranstaltung) behandelt das Basiswissen der Bauverfahrenstechnik und deren Auswirkungen auf die Bauausführung in Fortführung der Lehrveranstaltung aus dem WS. Hierzu gehören:
Lehrformen / Sprache

a) Übung (1 SWS) / Vorlesung (3 SWS) / Deutsch
b) Übung (1 SWS) / Blockseminar / Vorlesung (1 SWS) / Deutsch

Prüfungsformen

- Klausur 'Baubetrieb und Bauverfahrenstechnik' (150 Min., Anteil der Modulnote 100 %, Die Klausur findet im Sommersemester vorlesungsnah nach Beendigung des Blockseminars noch während der Vorlesungszeit (ca. Ende Mai) statt. Im Wintersemester findet die Klausur während der vorlesungsfreien Zeit statt.)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc Bauingenieurwesen
- BSc Umweltingenieurwesen

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = 8 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Modul Baukonstruktionen

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-05</td>
<td>5 LP</td>
<td>150 h</td>
<td>2. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 4 SWS (60 h)</td>
<td>a) 90 h</td>
<td>a) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr.-Ing. Wolfgang Willems

Teilnehmervoraussetzungen

Empfohlene Vorkenntnisse: abgeschlossenes Modul in Bauphysik

Lernziele/Kompetenzen

Die Studierenden

- verstehen das grundsätzliche Funktionieren wesentlicher Gebäudestrukturen unter ingenieurmäßigem Gesichtspunkt und leiten daraus die korrekte Baukonstruktion ab.
- ermitteln die elementaren statischen Gesetzmäßigkeiten und wenden sie in Verbindung mit den durch die Baustoffwahl vorgegebenen Erfordernissen (wie zuvor im Modul Bauphysik zum Wärme-, Schall- und Feuchteschutz gelernt) an.
- erlernen und begreifen die wesentlichen Konstruktionen des allgemeinen Hochbaus und deren normgerechte zeichnerische Darstellung.

Inhalte

a)

Die Vorlesung behandelt die Einführung in den Themenbereich der allgemeinen Baukonstruktionen. Hierzu gehören:

- Gebäudeentwurf im Kontext mit den grundlegenden statischen Systemen (Balken, Platten, Scheiben, Fachwerke, Schalen)
- Möglichkeiten der Gründung
- Entwicklung der wesentlichen Baukonstruktionen von Gebäuden: Geneigte Dächer, Flachdächer, Außen- und Kellerwände, Fenster, leichte Innenwände, Decken und Treppen
- Räumliche Stabilität von Gebäuden in Wand- und Skelettbauweisen

Im Rahmen der Übung werden darauf aufbauend dann die zentralen konstruktiven Details unterschiedlicher Anschlüsse ausführlich erarbeitet und zeichnerisch dargestellt.

Lehrformen / Sprache

a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch

Prüfungsformen

- Klausur 'Baukonstruktionen' (120 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc Bauingenieurwesen
Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = \(5 \times 100 \times \frac{FAK}{DIV} \)

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Modul Bauphysik

Building Physics

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-03/UI-B02</td>
<td>5 LP</td>
<td>150 h</td>
<td>1. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

- a) Bauphysik

Kontaktzeit
- a) 4 SWS (60 h)

Selbststudium
- a) 90 h

Turnus
- a) jedes WiSe

Modulverantwortliche/r und hauptamtlich Lehrende/r

- Prof. Dr.-Ing. Wolfgang Willems
- a) Prof. Dr.-Ing. Wolfgang Willems

Teilnahmevoraussetzungen

Lernziele/Kompetenzen

Die Studierenden

- erlernen das bauphysikalische Funktionieren der zentralen Bauteilquerschnitte im allgemeinen Hochbau,
- ordnen die unterschiedlichen Baustoffe ihren primären Funktionen zu,
- differenzieren und nutzen materialspezifische Kennwerte aus Normen und Bautabellen,
- beherrschen die grundlegenden Bemessungsansätze aus Wärme-, Feuchte- und Schallschutz nach den entsprechenden DIN-Normen,
- erkennen den Zusammenhang zwischen baukonstruktivem Entwurf und bauphysikalischer Funktion.

Inhalte

- a)

Die Vorlesung behandelt die Einführung in die Grundlagen der allgemeinen Bauphysik. Hierzu gehören:

- Wärmeschutz
- Feuchteschutz
- Raumakustik
- Bauakustik
- Brandschutz (informativ)

Im Rahmen der Übung werden die jeweiligen Bemessungs- und Nachweisverfahren vorgestellt und angewendet.

Lehrformen / Sprache

- a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch

Prüfungsformen

- Klausur 'Bauphysik' (120 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc Bauingenieurwesen
- BSc Umweltingenieurwesen

Stellenwert der Note für die Endnote

19
Anteil an der Gesamtnote [%] = 5 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

| Sonstige Informationen |

Baustofftechnik
Building Materials

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-04</td>
<td>10 LP</td>
<td>300 h</td>
<td>1./2. Sem.</td>
<td>2 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Kontaktzeit Selbststudium Turnus
a) 4 SWS (60 h) a) 60 h a) jedes WiSe
b) 4 SWS (60 h) b) 120 h b) jedes SoSe

Lehrveranstaltungen
a) Baustofftechnik I
b) Baustofftechnik II

Modulverantwortliche/r und hauptamtlich Lehrende/r
Prof. Dr.-Ing. Rolf Breitenbücher
a) Prof. Dr.-Ing. Rolf Breitenbücher
b) Prof. Dr.-Ing. Rolf Breitenbücher

Teilnahmevoraussetzungen

Lernziele/Kompetenzen
Die Studierenden
• besitzen grundlegende Kenntnisse über die maßgebenden Baustoffe im Bauwesen,
• können die wesentlichen Materialkennwerte von Baustoffen sowie deren Potential und Anwendungsgrenzen bestimmen,
• sind in der Lage, für konkrete Bauaufgaben optimal abgestimmte Werkstoffe zu ermitteln.

Inhalte
a) Die Lehrveranstaltung behandelt zunächst die Grundlagen der Baustoffkunde.
Dabei werden in erster Linie zementgebundene Baustoffe behandelt.

Grundlagen der Werkstoffprüfung
• Chemische und physikalische Grundlagen
• Festigkeiten, Formänderungen
• Prüfverfahren

Zementgebundene Baustoffe
• Ausgangsstoffe (Bindemittel, Gesteinskörnung, Zusätze)
• Beton (Grundlagen und Entwurf)
• Herstellung und Verarbeitung von Beton
• Hydratation von Beton

In den Übungen werden Betonentwürfe anhand von Praxisbeispielen erstellt und das anwendungsorientierte Materialverhalten von verschiedenen Baustoffen betrachtet.

In den Laborpraktika werden die in den Vorlesungen erarbeiteten Untersuchungsmethoden praxisnah durchgeführt und erläutert.

Modul Baustofftechnik

- Mechanische Eigenschaften (Festigkeit, Elastizität)
- Dauerhaftigkeit (Wechselwirkungen, Anforderungen, Prüfungen)
- Baustoffe (Festbeton, Mauerwerk, Holz, bituminöse Baustoffe, Glas)
- Metallische Werkstoffe und Polymerwerkstoffe
 1. Stahl / Nichteisenmetalle
 2. Kunststoffe / Harze
 3. Verbundwerkstoffe

In den Übungen werden Betonentwürfe anhand von Praxisbeispielen erstellt und das anwendungs-orientierte Materialverhalten von verschiedenen Baustoffen betrachtet.

In den Laborpraktika werden die in den Vorlesungen erarbeiteten Untersuchungsmethoden praxisnah durchgeführt und erläutert.

Lehrformen / Sprache
a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch
b) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch

Prüfungsformen
• Klausur 'Baustofftechnik' (150 Min., Anteil der Modulnote 100 %)
• a) Optionale Laborpraktika zur Erreichung von Bonuspunkten für die Klausur 3 Praktika, 4,5 Stunden am Semesterende
• b) Optionale Laborpraktika zur Erreichung von Bonuspunkten für die Klausur 2 Praktika, 3 Stunden am Semesterende

Voraussetzungen für die Vergabe von Credits
• Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls
• B.Sc Bauingenieurwesen

Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = 10 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Literatur:
• Ausführliche vorlesungsbegleitende Skripte des Lehrstuhls zu den einzelnen Baustoffen (rd. 650 Seiten)
• Umdrucke zu Übungen und Laborpraktika
Bauvertrags- und Umweltrecht
Construction Contract and Environmental Law

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>W07</td>
<td>2 LP</td>
<td>60 h</td>
<td>6. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Bauvertragsrecht</td>
<td>a) 1 SWS (15 h)</td>
<td>a) 15 h</td>
<td>a) jedes SoSe</td>
</tr>
<tr>
<td>b) Umweltrecht</td>
<td>b) 1 SWS (15 h)</td>
<td>b) 15 h</td>
<td>b) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r
Prof. Dr.-Ing. Markus Thewes
a) Prof. Dr. jur. M.M. Lederer
b) Dr. jur. Till Elgeti

Teilnahmeverzögerungen

Lernziele/Kompetenzen
Die Studierenden

- werden in die Grundlagen des Bauvertrag- und des Umweltrechts eingeführt,
- erwerben entsprechende Grundkenntnisse für ingenieurtechnische Aufgaben und deren vertragliche Umsetzung sowie der vertraglichen Auswirkungen bei der Bauausführung,
- lernen die unterschiedlichen Interessen von Auftraggebern und Auftragnehmern sowie beteiligter Behörden und Organisationen zu erkennen und in die Vertragswerke mit einzubeziehen,
- bearbeiten Standardaufgaben aus diesen Bereichen selbständig, entwickeln ein Grundverständnis für den Umgang mit Vorschriften und Gesetzen und erkennen die Probleme bei der Rechtsanwendung,

Inhalte

a)
Die Vorlesung behandelt umfassend das Basiswissen des Bauvertragsrechts auf Basis von BGB und VOB. Hierzu gehören:

- Grundlagen aus BGB und VOB
- Der Werkvertrag und die VOB für Bauleistungen
- Verpflichtungen der Vertragspartner bis zur Abnahme der Bauleistung
- Die Abnahme von Bauleistungen
- Mängel und Mängelansprüche
- die vom Auftraggeber geschuldete Vergütung.

b)
Die Vorlesung behandelt das Grundwissen des deutschen Umweltrechts auf der Basis der bundesrechtlichen Umweltschutzvorschriften unter Hinweis auf landesrechtliche Regelungsmöglichkeiten und Verwaltungszuständigkeiten. Hierzu gehören:

- Allgemeines Umweltrecht (Deutsches, europäisches und internationales Umweltrecht)

Lehrformen / Sprache
Modul Bauvertrags- und Umweltrecht

<table>
<thead>
<tr>
<th>a) Vorlesung (1 SWS) / Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Blockseminar / Vorlesung (1 SWS) / Deutsch</td>
</tr>
</tbody>
</table>

Prüfungsformen
- Klausur 'Bauvertrags- und Umweltrecht' (60 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits
- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls
- BSc Bauingenieurwesen
- MSc Bauingenieurwesen

Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = 2 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Die Blockveranstaltung Umweltrecht findet in der vorlesungsfreien Zeit statt.

24
Modul Bodenmechanik und Grundbau

Soil Mechanics and Foundation Engineering

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-12</td>
<td>8 LP</td>
<td>240 h</td>
<td>3. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| a) Grundlagen der Bodenmechanik |
| b) Grundlagen des Grundbaus |

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 3 SWS (45 h)</td>
<td>a) 75 h</td>
<td>a) jedes WiSe</td>
</tr>
<tr>
<td>b) 3 SWS (45 h)</td>
<td>b) 75 h</td>
<td>b) jedes WiSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr.-Ing. Torsten Wichtmann

a) Prof. Dr.-Ing. Torsten Wichtmann

b) Prof. Dr.-Ing. Torsten Wichtmann

Teilnahmevoraussetzungen

Empfohlene Vorkenntnisse: abgeschlossenes Modul in Mechanik

Lernziele/Kompetenzen

Die Studierenden

- kennen die Grundlagen der Beschreibung von Böden,
- wissen um das grundlegende Verhalten von Böden und dessen mathematisch idealisierte Beschreibung,
- besitzen die Fähigkeit, diese Konzepte auf die Bemessung von Grundbauwerken anzuwenden,
- haben das Verständnis Berechnungsergebnisse kritisch zu hinterfragen.

Inhalte

a)

Die Lehrveranstaltung behandelt das Basiswissen der Bodenmechanik. Hierzu gehören:

- Beschreibung und Klassifizierung von Böden
- Bodeneigenschaften und -kenngrößen
- Baugrunderkundung
- Wirkungen von Grundwasser im Boden
- Spannungsausbreitung im Baugrund
- Setzungs- und Konsolidierungsberechnungen im Boden
- Scherfestigkeit
- Erddruck auf Wände und Stützmauern

b)

Die Lehrveranstaltung behandelt das Basiswissen, wie es für übliche Fragestellungen der Grundbaupraxis verlangt wird:

- Standsicherheit von Böschungen
- Flachgründungen
- Stützkonstruktionen
- Grundwasserhaltungen
- Baugruben
- Pfahlgründungen
- Baugrundverbesserung
• Sonderkonstruktionen für Gründungen und Baugruben

<table>
<thead>
<tr>
<th>Lehrformen / Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Übung (1 SWS) / Vorlesung (2 SWS) / Deutsch</td>
</tr>
<tr>
<td>b) Übung (2 SWS) / Vorlesung (1 SWS) / Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Klausur ‘Bodenmechanik und Grundbau’ (180 Min., Anteil der Modulnote 100 %)</td>
</tr>
<tr>
<td>• Optionale Hausarbeit zur Erreichung von Bonuspunkten für die Klausur (35 Stunden, Abgabefrist wird am Anfang des Semesters bekanntgegeben)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bestandene Modulabschlussprüfung: Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendung des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BSc Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an der Gesamtnote [%] = 8 * 100 * FAK / DIV</td>
</tr>
<tr>
<td>FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).</td>
</tr>
<tr>
<td>DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.</td>
</tr>
</tbody>
</table>

| Sonstige Informationen |
Modul Building Information Modeling

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-21</td>
<td>5 LP</td>
<td>150 h</td>
<td>6. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 4 SWS (60 h)</td>
<td>a) 90 h</td>
<td>a) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr.-Ing. Markus König
a) Prof. Dr.-Ing. Markus König

Teilnahmeveranlassungen

Lernziele/Kompetenzen

Die Studierenden

- erwerben Kompetenzen zur Planung von Bauwerken mit Hilfe moderner Informations- und Kommunikationstechnologien,
- lernen die gängigen Methoden des BIM-basierten Informationsmanagements in Form von rechnergestützter Datenhaltung und wenden sie an,
- setzen gängige Softwarewerkzeuge zur Lösung von Planungsaufgaben ein,
- erarbeiten in Kleingruppen die Ausführung realitätsnaher Ausschreibungsprozesse,
- erwerben ein tiefergehendes Verständnis für die einzelnen Rollen im Zuge eines BIM-basierten Planungsprozesses,
- werden befähigt, sich in einer Projektgruppe zu organisieren und sich auch gegenüber dem Bauherrn bzw. dem Auftraggeber zu präsentieren,
- können anschließend die aktuelle wissenschaftliche Entwicklung innerhalb des Themenfeldes Building Information Modeling kritisch einordnen und in die Praxis überführen.

Inhalte

a)

- Grundlagen des Building Information Modeling
- Objektorientierte Modellierung
- Geometrische Modellierung
- Projektmanagement in BIM-Projekten
- 4D und 5D-Modellierung
- Informationsmanagement
- Werkzeuge zur BIM-basierten Planung

Lehrformen / Sprache

a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch

Prüfungsformen

- Hausarbeit 'Building Information Modeling' (90 Std., Anteil der Modulnote 100 %, Hausarbeit)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: erfolgreiche Abgabe der Hausarbeit

Verwendung des Moduls

- BSc Bauingenieurwesen
Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = 5 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Hydrologie und Wasserwirtschaft
Hydrology and Water Resources Management

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-13/UI-B04</td>
<td>7 LP</td>
<td>210 h</td>
<td>3./4. Sem.</td>
<td>2 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th></th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Grundlagen der Hydrologie</td>
<td>a) 2 SWS (30 h)</td>
<td>a) 60 h</td>
<td>a) jedes WiSe</td>
</tr>
<tr>
<td>b) Grundlagen des Wasserbaus</td>
<td>b) 1 SWS (15 h)</td>
<td>b) 45 h</td>
<td>b) jedes SoSe</td>
</tr>
<tr>
<td>c) Grundlagen der Wasserbewirtschaftung</td>
<td>c) 2 SWS (30 h)</td>
<td>c) 30 h</td>
<td>c) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr.-Ing. Martina Flörke

a) Prof. Dr.-Ing. Martina Flörke
b) Prof. Dr.-Ing. Martina Flörke
c) Prof. Dr.-Ing. Martina Flörke

Teilnahmevoraussetzungen

Empfohlene Vorkenntnisse: Kenntnisse in Höherer Mathematik und Strömungsmechanik

Lernziele/Kompetenzen

Die Studierenden

- kennen und beschreiben die verschiedenen Ausprägungen der Elemente des hydrologischen Kreislaufs und der jeweiligen hydrologischen Prozesse,
- charakterisieren Kernbereiche der Wasserbewirtschaftung im Bereich der Planung, konstruktiven Gestaltung und des Betriebes wasserwirtschaftlicher Anlagen,
- können hydrologische Grundlagenuntersuchungen für Wassergewinnungsanlagen und für Hochwasserschutzanlagen durchführen,
- verwenden grundlegende Kenntnisse über ingenieurwissenschaftliche Arbeitstechniken sowie Ansätze interdisziplinärer Arbeit.

Inhalte

a) Die Lehrveranstaltung vermittelt das Basiswissen zu hydrologischen Prozessen, die für ingenieurechnische Fragestellungen des Wasserbaus und der Wasserbewirtschaftung relevant sind. Hierzu gehören:

- Wasserkreislauf und Wasserhaushalt, Erfassung und Berechnung der Komponenten Niederschlag, Verdunstung, Abfluss
- Wassereinzugsgebiete und deren Wirkung auf die räumliche und zeitliche Verteilung des Abflusses
- Mathematische Verfahren und Methoden zur Berechnung der Hochwasserentstehung (Abflussbildung und Abflusskonzentration) als Grundlage für Hochwasservorhersagen
- Ansätze zur Berechnung des Hochwasserwellenablaufs
- Extremwertstatistik für Niedrig- und Hochwasser für wasserwirtschaftliche Bemessungen
- Klimawandel und Klimafolgen für den Wasserhaushalt

b)
Im Rahmen der Lehrveranstaltung werden die wichtigsten Wasserbauwerke sowie die wasserbaulichen Aufgaben dargestellt. Wasserbauliche Anlagen werden in ihren gebräuchlichen konstruktiven Ausbildungen erläutert. Hierzu zählen:

- Gewässerausbau und -umbaumaßnahmen: Querschnittsgestaltung, Uferschutz, Prüfung der Sohlstabilität
- Talsperren: Staumauern, Staudämme und die jeweiligen Betriebseinrichtungen
- Wehre: Feste Wehre, bewegliche Wehre
- Wasserkraftanlagen: Nieder-, Mittel- und Hochdruckkraftwerke
- Landwirtschaftlicher Wasserbau: Be- und Entwässerungssysteme
- Planung und Bau von Hochwasserschutzanlagen
- Elemente des Verkehrswasserbaus

c) Es werden die wesentlichen Problemstellungen der Planung und des Betriebs wasserwirtschaftlicher Anlagen und Systeme behandelt. Insbesondere werden Grundkenntnisse zur Planung und Bemessung von Talsperren, Hochwasserschutzanlagen und Wasserkraftanlagen vermittelt. Hierzu zählen Wirtschaftlichkeitsrechnungen sowie ausgewählte Fragen der Raumplanung. Im Einzelnen werden folgende Themen behandelt:

- Talsperrenbewirtschaftung: Ermittlung der erforderlichen Speicherkapazität, Bemessung auf Grundlage von Simulationen, Talsperrenbetriebspläne
- Hochwasserschutzplanung, Optionen des Hochwasserschutzes, Hochwasserschadensermittlung, Bemessung ungesteuerter HRB, Bemessung gesteuerter HRB, Flussdeiche
- Ökonomische Bewertung wasserwirtschaftlicher Projekte: Kapital- und Barwerte, interner Zinssatz, Nutzen-Kosten-Verhältnis, Projektkostenbewertung mit Zahlungsreihen
- Nutzwertanalyse, Kostenwirksamkeitsanalyse
- Grundlagen der Raumplanung

In den Übungen werden die verschiedenen Verfahren an praktischen Beispielen geübt.

Lehrformen / Sprache
a) Übung (1 SWS) / Vorlesung (1 SWS) / Deutsch
b) Vorlesung (1 SWS) / Deutsch
c) Übung (1 SWS) / Vorlesung (1 SWS) / Deutsch

Prüfungsformen
- Klausur 'Hydrologie und Wasserwirtschaft' (120 Min., Anteil der Modulnote 100 %)
- Optionale Hausarbeit zur Erreichung von Bonuspunkten für die Klausur (30 Stunden, Abgabefrist wird am Anfang des Semesters bekanntgegeben)

Voraussetzungen für die Vergabe von Credits
- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls
- BSc Bauingenieurwesen
- BSc Umwelt ingenieurwesen

Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = 7 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.
<table>
<thead>
<tr>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterbegleitende Lernerfolgskontrolle mit DGBL (digital game-based learning)</td>
</tr>
</tbody>
</table>
Höhere Mathematik A
Advanced Mathematics A

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-01/UI-01</td>
<td>8 LP</td>
<td>240 h</td>
<td>1. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

a) Mathematik 1

Kontaktzeit

a) 6 SWS (90 h)

Selbststudium

a) 150 h

Turnus

a) jedes WiSe

Modulverantwortliche/r und hauptamtlich Lehrende/r

N.N.

a) Prof. Dr. G. Laures, Prof. Dr. Jörg Winkelmann, Prof. Dr. rer. nat. P. Heinzner, Prof. Dr. Markus Reinecke

Teilnahmevoraussetzungen

Empfohlene Vorkenntnisse: Teilnahme am vierwöchigen „Vorkurs für künftige Studierende der Ingenieurwissenschaften“ vor Studienbeginn im September

Lernziele/Kompetenzen

Nach dem erfolgreichen Abschluss des Moduls

- kennen Studierende die wichtigsten Methoden der Ingenieurmathematik
- können Studierende mathematische Problemstellungen in physikalischen Systemen erkennen und lösen
- praktizieren Studierende erste Ansätze wissenschaftlichen Lernens und Denkens
- verfügen Studierende über fachübergreifende Methodenkompetenz

Inhalte

a)

Mathematische Methoden der Analysis einer Veränderlichen:

- Komplexe Zahlen: Definition, Eigenschaften und Rechenregeln
- Matrizen, Determinanten und Lösungsverfahren für lineare Gleichungssysteme
- Vektorräume, Unterräume und Basiswechsel
- Eigenwerte, Eigenvektoren und Hauptsachentransformation
- Folgen und Reihen und deren Konvergenz; Konvergenzkriterien
- Differentialrechnung für Funktionen einer reellen und komplexen Veränderlichen (Differentiationstechniken, Mittelwertsätze, Taylorformeln, Anwendungen)
- Integralrechnung einer Veränderlichen (Integrationstechniken, Stammfunktionen, Mittelwertsätze, Anwendungen)

Lehrformen / Sprache

a) Übung (2 SWS) / Vorlesung (4 SWS) / Deutsch

Prüfungsformen

- Klausur ‘Höhere Mathematik A’ (180 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc Bauingenieurwesen
<table>
<thead>
<tr>
<th>BSc Umweltingenieurwesen</th>
</tr>
</thead>
</table>

Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = 8 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Höhere Mathematik B
Advanced Mathematics B

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-06/UI-06</td>
<td>8 LP</td>
<td>240 h</td>
<td>2. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Mathematik 2</td>
<td>a) 6 SWS (90 h)</td>
<td>a) 150 h</td>
<td>a) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r
N.N.
a) Prof. Dr. G. Laures, Prof. Dr. Jörg Winkelmann, Prof. Dr. rer. nat. P. Heinzner, Prof. Dr. Markus Reinecke

Teilnahmevoraussetzungen
Empfohlene Vorkenntnisse: Mathematik 1

Lernziele/Kompetenzen
Nach dem erfolgreichen Abschluss des Moduls
- kennen Studierende die wichtigsten Methoden der Ingenieurmathematik
- können Studierende mathematische Problemstellungen in physikalischen Systemen erkennen und lösen
- praktizieren Studierende erste Ansätze wissenschaftlichen Lernens und Denkens
- verfügen Studierende über fachübergreifende Methodenkompetenz

Inhalte
a) Mathematische Methoden der Analysis mehrerer Veränderlicher:
- Potenzreihen (Konvergenzkriterien, Anwendungen)
- Differentialrechnung für Funktionen mehrerer Veränderlicher (totale Ableitung, Richtungsableitung, partielle Ableitungen und Zusammenhänge, Differentiationstechniken, Anwendungen, u.a. Extrema mit und ohne Nebenbedingungen)
- Integralrechnung für Funktionen mehrerer Veränderlicher (Gebiets-, Volumen- und Flächenintegrale, Integralsätze von Green, Gauß und Stokes mit Anwendungen)
- Gewöhnliche Differentialgleichungen und Lösungstechniken (Trennung der Variablen, Variation der Konstanten, exakte Differentialgleichungen und integrierende Faktoren, spezielle Typen von Differentialgleichungen, Systeme gewöhnlicher Differentialgleichungen)

Lehrformen / Sprache
a) Übung (2 SWS) / Vorlesung (4 SWS) / Deutsch

Prüfungsformen
- Klausur ‘Höhere Mathematik B’ (180 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits
- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls
- BSc Bauingenieurwesen
- BSc Umweltingenieurwesen
Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = 8 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Höhere Mathematik C
Advanced Mathematics C

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-09/UI-11</td>
<td>5 LP</td>
<td>150 h</td>
<td>3. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
a) Höhere Mathematik C

Kontaktzeit
a) 4 SWS (60 h)

Selbststudium
a) 90 h

Turnus
a) jedes WiSe

Modulverantwortliche/r und hauptamtlich Lehrende/r
Prof. Dr. rer. nat. Herold Dehling
a) Prof. Dr. rer. nat. Herold Dehling

Teilnahmevoraussetzungen
Empfohlene Vorkenntnisse: Kenntnisse in Höherer Mathematik

Lernziele/Kompetenzen
Die Studierenden

• kennen die Grundbegriffe der Wahrscheinlichkeitstheorie und Statistik,
• sind in der Lage, Standardaufgaben nachzuvollziehen und selbstständig zu bearbeiten,
• kennen das Auftreten und die Bedeutung des Zufalls in Natur und Technik und sind im Stande, Zufallssphänome mit Standardverfahren zu modellieren,
• können das Erlernte auf konkrete ingenieurwissenschaftliche Probleme anwenden.

Inhalte

Lehrformen / Sprache
a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch

Prüfungsformen
• Klausur 'Höhere Mathematik C' (90 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits
• Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls
• BSc Bauingenieurwesen
Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = \(5 \times 100 \times \frac{FAK}{DIV}\)
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Ingenieurinformatik

Modul-Nr. BI-08/UI-08
Credits 5 LP
Workload 150 h
Semester 2. Sem.
Dauer 1 Semester
Gruppengröße keine Beschränkung

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Einführung in die Programmierung</td>
<td>a) 4 SWS (60 h)</td>
<td>a) 90 h</td>
<td>a) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r
Prof. Dr.-Ing. Markus König
a) Prof. Dr.-Ing. Markus König

Teilnahmevoraussetzungen
Empfohlene Vorkenntnisse: Kenntnisse in Höherer Mathematik und Mechanik

Lernziele/Kompetenzen
Die Studierenden

- werden befähigt eine systematische Analyse von komplexen Problemen durchzuführen, wobei der Computer als modernes Werkzeug im Ingenieurwesen nahegebracht wird,
- erlernen Kompetenzen zur Lösung von einfachen ingenieurspezifischen Fragestellungen unter Verwendung einer Programmiersprache,
- werden befähigt, sich in einer Projektgruppe zu organisieren und gemeinsam eine Implementierung einer kleinen Anwendung vorzunehmen

Inhalte

a)
- Grundlagen der Informatik und einer Programmiersprache
- Zahlendarstellung
- Datentypen und Variablen
- Kontrollstrukturen
- Algorithmen
- Objektorientierte Modellierung
- Werkzeuge zur Entwicklung von IT-Anwendungen

Lehrformen / Sprache

a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch

Prüfungsformen

- Hausarbeit 'Ingenieurinformatik' (90 Std., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: erfolgreiche Abgabe der Hausarbeit

Verwendung des Moduls

- BSc Bauingenieurwesen
- BSc Umwelt ingenieurwesen

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = 5 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Modul Mechanik A

Mechanik A
Mechanics A

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-02/UI-02</td>
<td>9 LP</td>
<td>270 h</td>
<td>1. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

- a) Mechanik A
 - Kontaktzeit: a) 7 SWS (105 h)
 - Selbststudium: a) 165 h
 - Turnus: a) jedes WiSe

Lehrverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr.-Ing. Daniel Balzani
a) Prof. Dr. rer. nat. K. Hackl, Prof. Dr.-Ing. Daniel Balzani

Teilnahmeveranlassetzungen

Lernziele/Kompetenzen

Die Studierenden

- sind mit den für die weiterführenden Lehrveranstaltungen wesentlichen Terminologien und Denkweisen hinsichtlich der Mechanik starrer Körper vertraut,
- sind in der Lage, statische Gegebenheiten zu abstrahieren, auf das Wesentliche zu reduzieren und dieses Ergebnis mit den Methoden der Mathematik zu verarbeiten,
- sind in der Lage, Kräftesysteme und Körper sowie die Einwirkungen, die diese Kräftesysteme auf die Körper im Zustand der Ruhe und der Bewegung ausüben, zu beschreiben und rechnerisch zu analysieren.

Inhalte

a)
- Allgemeine Grundlagen: Physikalische Größen, Bezugssysteme, Eigenschaften von Körpern und Kräften, SI-Einheiten
- Zentrale ebene und räumliche Kräftesysteme: Reduktion, Gleichgewicht
- Allgemeine ebene und räumliche Kräftesysteme: Äquivalenzsätze für Kräfte, das Moment einer Kraft, Kräftepaar, Reduktion, Gleichgewicht
- Allgemeines zur Kinetik: Grundbegriffe der Kinematik, Grundgesetz der Mechanik, Energiebetrachtungen
- Metrische Größen von Körpern, Flächen, Linien: Momente vom Grade 0 und 1, Schwerpunkt, idealisierte Körper
- Gestützte Körper: stat. best. Lagerung, Auflager-Reaktionen, Haftung und Reibung
- Schnittgrößen: Schnittprinzip, Differentialbeziehungen für gerade Stäbe, Zustandslinien
- Energiemethoden in der Statik, Stabilität des Gleichgewichts
- Spannungsbegriff und mehrdimensionale Spannungszustände

Lehrformen / Sprache

a) Vorlesung (3 SWS) / Übung (4 SWS) / Deutsch

Prüfungsformen

- Klausur 'Mechanik A' (120 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur
Verwendung des Moduls
- BSc Bauingenieurwesen
- BSc Maschinenbau
- BSc Umweltingenieurwesen
- BSc Materialwissenschaften

Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = 9 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Modul Mechanik B
Mechanics B

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-07</td>
<td>8 LP</td>
<td>240 h</td>
<td>2. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Mechanik B</td>
<td>a) 6 SWS (90 h)</td>
<td>a) 150 h</td>
<td>a) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r
Prof. Dr. rer. nat. K. Hackl
a) Prof. Dr. rer. nat. K. Hackl, Prof. Dr.-Ing. Daniel Balzani

Teilnahmevoraussetzungen
Empfohlene Vorkenntnisse: Mechanik A, Mathematik A

Lernziele/Kompetenzen
Die Studierenden

- sind mit den für die weiterführenden Lehrveranstaltungen wesentlichen Terminologien und Denkweisen hinsichtlich der Mechanik deformierbarer Körper vertraut,
- sind in der Lage, elastostatische Gegebenheiten zu abstrahieren, auf das Wesentliche zu reduzieren und dieses Ergebnis mit den Methoden der Mathematik zu verarbeiten,
- sind in der Lage, Deformationen, Verzerrungen und Spannungen in allgemein belasteten Balkensystemen zu beschreiben und rechnerisch zu analysieren.

Inhalte
a)
- Grundlagen der Mechanik deformierbarer Körper: Verzerrungen
- Materialgesetze: linear-elastische Körper, Festigkeitshypothesen
- Elementare Festigkeitslehre des dreidimensionalen Biegebalkens für allgemeine Belastungszustände: Biegenormalspannungen, Flächentragfähigkeiten, Schubspannungen aus Querkraft, Differentialgleichung der Biegelinie, Verbundquerschnitte
- Schubmittelpunkt und Torsion prismatischer Stäbe
- Energiemethoden in der Festigkeitslehre: Prinzip der virtuellen Kräfte, Berechnung statistisch unbestimmter Systeme
- Gleichgewicht am verformten Körper, Knickung

Die Vorlesung wird durch zahlreiche Anwendungen und Beispiele ergänzt.

Lehrformen / Sprache
a) Übung (3 SWS) / Vorlesung (3 SWS) / Deutsch

Prüfungsformen
- Klausur 'Mechanik B' (120 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits
- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls
- BSc Bauingenieurwesen
- BSc Maschinenbau
<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an der Gesamtnote [%] = 8 * 100 * FAK / DIV</td>
</tr>
<tr>
<td>FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).</td>
</tr>
<tr>
<td>DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.</td>
</tr>
</tbody>
</table>

<p>| Sonstige Informationen |</p>
<table>
<thead>
<tr>
<th>Physik</th>
<th>Physics for Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-Nr.</td>
<td>Credits</td>
</tr>
<tr>
<td>W01</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Physik für Ingenieure (Bauingenieurwesen, UI, SEPM)</td>
<td>a) 3 SWS (45 h)</td>
<td>a) 75 h</td>
<td>a) jedes WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r und hauptamtlich Lehrende/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servicezentrum Physik</td>
</tr>
<tr>
<td>a) Servicezentrum Physik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmeveruaissetzungen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durch die Einführung in die Grundkonzepte der klassischen Physik können die Studierenden</td>
</tr>
<tr>
<td>• die Grundlagen mechanischer, elektrischer, magnetischer, optischer und thermodynamischer Phänomene verstehen</td>
</tr>
<tr>
<td>• praktische Probleme aus Alltag und Technik physikalischen Teilgebieten zuordnen</td>
</tr>
<tr>
<td>• die wichtigsten physikalischen Grundlagen des Maschinenbaus verstehen</td>
</tr>
<tr>
<td>• physikalische Probleme analysieren, mit geeigneten Grundprinzipien beschreiben und selbständig Lösungsansätze formulieren</td>
</tr>
<tr>
<td>• konkrete Probleme idealisieren bis hin zur mathematisch abstrakten Beschreibung</td>
</tr>
<tr>
<td>• mit physikalischen Größen und Einheiten professionell umgehen</td>
</tr>
<tr>
<td>• den Nutzen physikalischer Erhaltungssätze nachvollziehen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
</tr>
<tr>
<td>• Einführung: Mathematische Grundlagen, Maßeinheiten</td>
</tr>
<tr>
<td>• Kinematik: Kinematik der Punktmasse (Trajektorie, Geschwindigkeit, Beschleunigung)</td>
</tr>
<tr>
<td>• Dynamik: Dynamik der Punktmasse (Kräfteaddition und Kräftezerlegung, Energie- und Impulserhaltung, Leistung, Reibung) harmonischer Oszillator, Schwingungen, Wellen</td>
</tr>
<tr>
<td>• Gravitationskraft Mechanik von starren Körpem, Drehbewegung</td>
</tr>
<tr>
<td>• Hydrostatik/Hydrodynamik: Druck, Bernoulli Gleichung, Viskosität</td>
</tr>
<tr>
<td>• Wärmelehre: Temperatur, thermische Ausdehnung, Zustandsgleichung idealer Gase, Phasenübergänge, Wärmetransport nicht ideale Gase, Wärmekraftmaschinen</td>
</tr>
<tr>
<td>• Elektrizitätslehre: Elektronen, elektrisches Potential und Spannung, Ströme und elektrischer Widerstand, Kapazität eines Kondensators, Stromkreis, Magnetfelder, Induktivität</td>
</tr>
<tr>
<td>• Optik: Brechung, Totalreflexion, Optische Abbildung, Polarisiertes Licht, Interferenz</td>
</tr>
<tr>
<td>• Grundlagen d. Struktur der Materie: Atome, Moleküle, Orbitale, Kastenpotential, Schrödingergleichung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrformen / Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Übung (1 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Klausur 'Physik' (120 Min., Anteil der Modulnote 100 %)</td>
</tr>
</tbody>
</table>
Voraussetzungen für die Vergabe von Credits
- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls
- BSc Bauingenieurwesen
- BSc Umweltingenieurwesen

Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = 4 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Planen, Sprechen, Schreiben: Projektmanagement und wissenschaftliches Arbeiten im Ingenieurwesen

Planning, Speaking, Writing: project management and scientific work in engineering

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-W28</td>
<td>3 LP</td>
<td>90 h</td>
<td>ab dem 2. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

a) Planen, Sprechen, Schreiben: Projektmanagement und wissenschaftliches Arbeiten im Ingenieurwesen

- **Kontaktzeit:** a) 3 SWS (45 h)
- **Selbststudium:** a) 45 h

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr. rer. nat. Harro Stolpe

- a) Prof. Dr. rer. nat. Harro Stolpe, Prof. Dr.-Ing. M. Radenberg, Dr.-Ing. Christian Jolk

Teilnahmeveraussetzungen

Lernziele/Kompetenzen

Ergänzend zur fachlichen Ausbildung verfügen die Studierenden nach Besuch des Moduls über Kenntnisse der Projektplanung und des selbstständigen Projektmanagements zur Vorbereitung auf anstehende Projekt- und Abschlussarbeiten.

Nach dem erfolgreichen Abschluss des Moduls

- planen Studierende ihre Abschlussarbeiten nach den Regeln eines effizienten Zeit- und Projektmanagements
- verfügen Studierende über Techniken des wissenschaftlichen Arbeitens und Präsentierens
- verfassen Studierende mit Hilfe erlernter Schreibtechniken wissenschaftliche Texte
- recherchieren, verwalten und organisieren Studierende Literatur unter Zuhilfenahme aktueller Software

Inhalte

a)

In der Lehrveranstaltung werden in Kooperation mit dem Projektbüro Bauen und Umwelt als „simuliertes Ingenieurbüro“ und unter Einbezug von Experten die Themen Projektmanagement und Techniken wissenschaftlichen Arbeitens behandelt. Hierzu gehören u.a.:

- Zeit- und Projektmanagement
- Aufbau eines Exposés
- Aufbau und Charakteristika einer wissenschaftlichen Arbeit
- Literaturrecherche und -verwaltung
- Schreibtraining
- Präsentationstechniken und Kriterien einer professionellen mündlichen Präsentation

Dabei werden die Inhalte nicht nur „theoretisch“ vermittelt, sondern jeweils auch unter praxisnahen Bedingungen erprobt und eingeübt.

Lehrformen / Sprache

- a) Vorlesung (3 SWS) / Deutsch

Prüfungsformen
Modul Planen, Sprechen, Schreiben: Projektmanagement und wissenschaftliches Arbeiten im Ingenieurwesen

- Hausarbeit 'Planen, Sprechen, Schreiben: Projektmanagement und wissenschaftliches Arbeiten im Ingenieurwesen' (15 Std., Anteil der Modulnote 100 %, mit abschließender mündlicher Prüfung (30 Min.))

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Bestandene Modulabschlussprüfung: Hausarbeit mit mündliche Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendung des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>- MSc. Bauingenieurwesen</td>
</tr>
<tr>
<td>- MSc. Umweltingenieurwesen</td>
</tr>
<tr>
<td>- BSc. Bauingenieurwesen</td>
</tr>
<tr>
<td>- BSc. Umweltingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an der Gesamtnote [%] = 3 * 100 * FAK / DIV</td>
</tr>
<tr>
<td>FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).</td>
</tr>
<tr>
<td>DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockveranstaltung am Ende des Semesters</td>
</tr>
</tbody>
</table>
Projektarbeit

Project

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>W09</td>
<td>6 LP</td>
<td>180 h</td>
<td>6. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

- a) Projektarbeit

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 180 h</td>
<td>a) jeder Anlass</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

- Alle Professorinnen und Professoren des Studiengangs
- a) Alle Professorinnen und Professoren des Studiengangs

Teilnahmeveranlassungen

- Empfohlene Vorkenntnisse: Lehrinhalte der in der fachübergreifenden Projektarbeit enthaltenen Module

Lernziele/Kompetenzen

Die Studierenden erwerben die Fähigkeit

- mit Kreativität, Vorstellungsvermögen, Teamgeist und Sozialkompetenz die technischen Inhalten der ausgewählten Module zu bearbeiten und vernetztes Denken anzuwenden
- komplexe Aufgaben zu strukturieren
- Problemlösungen zu konzipieren
- im Team zu arbeiten
- Verantwortlichkeiten unter den verschiedenen Teammitgliedern zu verteilen
- Ergebnisse zu präsentieren

Inhalte

a) Die Inhalte der Projektarbeiten werden individuell von Semester zu Semester unterschiedlich gestaltet, so dass aktuelle Problemstellungen aus Bauingenieurwesen bearbeitet werden können. Die über die Aufgabenstellung definierten Inhalte werden so formuliert, dass folgende Aspekte Berücksichtigung finden:

- Problemstellungen erkennen und beschreiben
- Zielvorstellungen formulieren
- Aufgaben verteilen und koordinieren
- Gruppendynamische Problemlösung
- Zeit- und Arbeitseinteilung gestalten und optimieren
- Interdisziplinäre Problemlösung
- Literaturbeschaffung und Auswertung sowie Expertenbefragung
- Dokumentation (digital und in Papierform), Aufbereitung und Präsentation vonArbeitsergebnissen

Lehrformen / Sprache

- a) Projekt / Deutsch

Prüfungsformen

- Hausarbeit 'Projektarbeit' (180 Std., Anteil der Modulnote 100 %, mit Präsentation)

Voraussetzungen für die Vergabe von Credits

- Bestandene Projektarbeit
- Abgelegte Präsentation

Verwendung des Moduls
<table>
<thead>
<tr>
<th>BSc Bauingenieurwesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellenwert der Note für die Endnote</td>
</tr>
<tr>
<td>Anteil an der Gesamtnote [%] = 6 * 100 * FAK / DIV</td>
</tr>
<tr>
<td>FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).</td>
</tr>
<tr>
<td>DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.</td>
</tr>
</tbody>
</table>

| Sonstige Informationen |
Modul Siedlungswasserwirtschaft

Urban Water Management

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-18</td>
<td>8 LP</td>
<td>240 h</td>
<td>4./5. Sem.</td>
<td>2 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

a) Grundzüge der Siedlungswasserwirtschaft
b) Abwasserreinigung (kommunal)

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 4 SWS (60 h)</td>
<td>a) 90 h</td>
<td>a) jedes SoSe</td>
</tr>
<tr>
<td>b) 2 SWS (30 h)</td>
<td>b) 60 h</td>
<td>b) jedes WiSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr.-Ing. Marc Wichern
a) Prof. Dr.-Ing. Marc Wichern
b) Prof. Dr.-Ing. Marc Wichern

Teilnahmevoraussetzungen

Empfohlene Vorkenntnisse: Höhere Mathematik A

Lernziele/Kompetenzen

Die Studierenden
- verfügen über grundlegende Kenntnisse zur Ver- und Entsorgung von Wasser und zur Abfallentsorgung,
- kennen die biologischen und chemischen Zusammenhänge, um das Prinzip der Trinkwasserversorgung und Abwassertechnik zu verstehen,
- kennen die wesentlichen naturwissenschaftlichen und ingenieurtechnischen Grundlagen, um die entsprechenden Systeme zu dimensionieren,
- haben vertiefte Kenntnisse in der kommunalen Abwasserreinigung,
- können die Zusammenhänge physikalischer, biologischer und chemischer Prozesse erkennen,
- sind in der Lage, die unterschiedlichen Prozessstufen einer Kläranlage nach deutschen Richtlinien zu bemessen und auszulegen,
- haben ein grundlegendes Verständnis für nachhaltige Verfahren in der Abwasserreinigung.

Inhalte

a)
Die Lehrveranstaltung behandelt Ver- und Entsorgung von Wasser. Hierzu gehören:
- Aufgaben und Ziele der Siedlungswasserwirtschaft
- Kanalberechnungsmethoden
- Grundlagen der Trinkwasseraufbereitung, -förderung und –verteilung
- Abwasseranfall und dessen Risiko für Mensch und Umwelt vor dem Hintergrund der geschichtlichen Entwicklung in den Städten und Siedlungen
- Funktion und Bedeutung der Bauwerke zur Abwasserableitung
- Grundzüge der chemischen und biologischen Abwasserreinigung in Kläranlagen
- Überblick über Gewässergütenwirtschaft und Abfallwirtschaft

b)
Gegenstand der Vorlesung und Übung sind die physikalischen und chemischen Grundlagen der Abwasserreinigung und Klärschlammbehandlung. Im Einzelnen werden behandelt:
- Verfahren der Abwasserbehandlung
- Verschiedene Belebungsverfahren Biofilmverfahren
- Membrantechnik
- Anaerobtechnik in der Schlammbehandlung
- Grundlagen der biologischen Kohlenstoff-, Stickstoff- und Phosphorelimination
- Anlagen und Verfahren zur Klärschlammbehandlung

<table>
<thead>
<tr>
<th>Lehrformen / Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch</td>
</tr>
<tr>
<td>b) Übung (1 SWS) / Vorlesung (1 SWS) / Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Klausur 'Siedlungswasserwirtschaft' (120 Min., Anteil der Modulnote 100 %)</td>
</tr>
<tr>
<td>• Optionale Hausarbeit zur Erreichung von Bonuspunkten für die Klausur (20 Stunden)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bestandene Modulabschlussprüfung: Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendung des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BSc Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an der Gesamtnote [%] = 8 * 100 * FAK / DIV</td>
</tr>
</tbody>
</table>

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

| Sonstige Informationen |
Modul Stahl- und Holzbau

Steel and Timber Structures

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-17</td>
<td>12 LP</td>
<td>360 h</td>
<td>4./5. Sem.</td>
<td>2 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Stahlbau I</td>
<td>a) 4 SWS (60 h)</td>
<td>a) 90 h</td>
<td>a) jedes SoSe</td>
</tr>
<tr>
<td>b) Stahlbau II</td>
<td>b) 4 SWS (60 h)</td>
<td>b) 60 h</td>
<td>b) jedes WiSe</td>
</tr>
<tr>
<td>c) Ingenieurholzbau</td>
<td>c) 2 SWS (30 h)</td>
<td>c) 60 h</td>
<td>c) jedes WiSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r
Prof. Dr. sc. techn. Markus Knobloch
a) Prof. Dr. sc. techn. Markus Knobloch
b) Prof. Dr. sc. techn. Markus Knobloch
c) Prof. Dr. sc. techn. Markus Knobloch

Teilnahmevoraussetzungen
Empfohlene Vorkenntnisse: Mechanik, Statik- und Tragwerkslehre

Lernziele/Kompetenzen
Die Studierenden
- verfügen über grundlegende Kenntnisse für den Entwurf, die Bemessung und die Ausführung von Stahl-, Stahl-Beton-Verbund- und Holzkonstruktionen,
- kennen das grundlegende Verhalten stabförmiger Bauteile und Verbindungen bei der Lastabtragung,
- können analytische und numerische Lösungsmethoden für Entwurfs-, Bemessungs- und Konstruktionsaufgaben aus dem Hoch- und Industriebau selbstständig anwenden.

Inhalte
a) Die Lehrveranstaltung behandelt das Basiswissen für den konstruktiven Entwurf von Stahlkonstruktionen und die Bemessung von Stäben und Stabwerken im Stahlbau. Hierzu gehören:
- Anwendungsgebiete des Stahlbaus
- Typische Bauteile und Konstruktionen im Hoch- und Industriebau
- Werkstoff Stahl: Werkstoffeigenschaften und Berechnungsannahmen
- Werkstoffmechanische Grundlagen des Stahlbaus: Formänderungen, Werkstoffversagen, Kerbwirkung, Betriebsfestigkeit
- Stabtheorie, Querschnittswerte und Spannungsnachweise
- Plastische Querschnitttragfähigkeit
- Geschraubte und geschweißte Verbindungen
- Gelenkige Anschlüsse, biegesteife Stöße und Rahmenecken
- Grundlagen der Stabilitätstheorie
- Spannungstheorie II. Ordnung
- Tragsicherheitsnachweise
b)
Gegenstand der Lehrveranstaltung sind ergänzendes Wissen und Kompetenzen für die konstruktive Durchbildung und die Bemessung stabförmiger Bauteile sowie die Ausführung von Stahl- und Stahl-Beton-Vерbindungskonstruktionen. Im Einzelnen werden behandelt:

- Stabilitätsfälle Biegeknicken, Biegedrillknicken und Plattenbeulen
- Beulen und dünnwandige Bauteile
- Tragwerke, Bauteile, Lastabtragung
- Ausführung von Stützen, Rahmen und Verbänden
- Ausführung von Vollwand- und Fachwerkträgern
- Aussteifung und Stabilisierung von Tragwerken
- Einleitung und Umlenkung von Kräften
- Verbundträger, -stützen und -decken

Die Lehrveranstaltung vermittelt die Grundlagen für den Entwurf, die Bemessung und die Ausführung von Konstruktionen des Ingenieurholzbau. Hierzu gehören:

- Anwendungsgebiete des Holzbau
- Tragwerke und Bauteile des Ingenieurholzbau
- Werkstoff Holz: Physikalische und mechanische Eigenschaften von Holz und Holzwerken
- Verbindungen und Verbindungsmittel
- Stabilitätsnachweise zum Knicken und Kippen
- Konstruktive Aspekte des Holzbau
- Grenzzustände und Bemessung nach DIN EN 1995-1-1

Lehrformen / Sprache

| a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch |
| b) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch |
| c) Übung (1 SWS) / Vorlesung (1 SWS) / Deutsch |

Prüfungsformen

- Klausur 'Stahl- und Holzbau' (180 Min., Anteil der Modulnote 100 %)
- Hausarbeit 'Stahl- und Holzbau - Hausarbeit' (60 Std., Anteil der Modulnote 0 %, Regelmäßige erfolgreiche Bearbeitung von Übungsaufgaben, Abgabefristen werden am Anfang des Semesters bekanntgegeben, muss vor Teilnahme an der Klausur bestanden sein)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur
- Bestandene Hausarbeit: Erfolgreiche Bearbeitung von Übungsaufgaben

Verwendung des Moduls

- BSc Bauingenieurwesen

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = 12 * 100 * FAK / DIV

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Stahlbeton- und Spannbetonbau
Reinforced and Prestressed Concrete Structures

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-16</td>
<td>12 LP</td>
<td>360 h</td>
<td>4./5. Sem.</td>
<td>2 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

a) Grundlagen des Stahlbeton- und Spannbetonbaus I
b) Grundlagen des Stahlbeton- und Spannbetonbaus II

Kontaktzeit

a) 5 SWS (75 h)
b) 5 SWS (75 h)

Selbststudium

a) 75 h
b) 135 h

Turnus

a) jedes SoSe
b) jedes WiSe

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr.-Ing Peter Mark

a) Prof. Dr.-Ing Peter Mark
b) Prof. Dr.-Ing Peter Mark

Teilnahmepaussetzungen

Empfohlene Vorkenntnisse: Kenntnisse in Mechanik, Baustofftechnik sowie Statik und Tragwerkslehre

Lernziele/Kompetenzen

Die Studierenden

• sind in der Lage Stahlbetontragwerke des üblichen Hochbaus vollständig zu bemessen und bis in die Einzelheiten der Bewehrungsführung konstruktiv zu durchbilden. Zu den Tragwerkselementen gehören (Platten-) Balken, Rahmen und (schlanke) Stützen sowie Patten und Scheiben.
• beherrschen die zeichnerische Umsetzung von Konstruktionen in Schal- und Bewehrungspläne
• verfügen über grundlegende Kenntnisse des Spannbetonbaus, können einfache Spannbetontragwerke in Grundzügen berechnen und komplexe Tragwerke beurteilen

Inhalte

a)

Die Lehrveranstaltung vermittelt das Basiswissen zu Bemessung und konstruktiver Durchbildung stabförmiger Stahlbetonbauteile. Hierzu gehören:

• Biegebemessung von Stahlbetonquerschnitten
• Bemessung gegen Querkräfte, Torsion und Durchstanzen
• Rissbreitenbeschränkung, Spannungs- und Durchbiegungsbegrenzungen

b)

Die Lehrveranstaltung behandelt die Bemessung und konstruktive Durchbildung stab- und flächenförmiger Stahlbetonbauteile sowie die Grundzüge des Spannbetonbaus. Im Einzelnen werden behandelt:

• Bemessung von platten- und scheibenartigen Bauteilen
• Grundlagen des Spannbetonbaus
• Druckglieder und Rahmen
• Detailprobleme
• Bewehrung flächiger Bauteile
• Fachwerkmodelle
• Grundlagen zu Führung, Verankerung und Wahl von Stabbewehrung

Lehrformen / Sprache
Prüfungsformen
- Klausur 'Stahlbeton- und Spannbetonbau' (180 Min., Anteil der Modulnote 100 %)
- Hausarbeit 'Bemessung und Konstruktion' (30 Std., Anteil der Modulnote 0 %, Abgabefrist wird zu Beginn des Semesters bekanntgegeben; muss vor Teilnahme an der Klausur bestanden sein)
- Hausarbeit 'Hochbautragwerk' (30 Std., Anteil der Modulnote 0 %, Abgabefrist wird zu Beginn des Semesters bekanntgegeben; muss vor Teilnahme an der Klausur bestanden sein)

Voraussetzungen für die Vergabe von Credits
- Bestandene Modulabschlussprüfung: Klausur
- Bestandene Hausarbeit „Bemessung und Konstruktion"
- Bestandene Hausarbeit „Hochbautragwerk"

Verwendung des Moduls
- BSc Bauingenieurwesen

Stellenwert der Note für die Endnote
\[
\text{Anteil an der Gesamtnote} \% = 12 \times 100 \times \frac{\text{FAK}}{\text{DIV}}
\]
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Statik und Tragwerkslehre A

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-11/UI-B03</td>
<td>5 LP</td>
<td>150 h</td>
<td>3. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
a) Statik und Tragwerkslehre A

Kontaktzeit
a) 4 SWS (60 h)

Selbststudium
a) 90 h

Turnus
a) jedes WiSe

Modulverantwortliche/r und hauptamtlich Lehrende/r
Prof. Dr. techn. Günther Meschke
a) Prof. Dr. techn. Günther Meschke

Teilnahmevoraussetzungen
abgeschlossenes Modul Mechanik A

Lernziele/Kompetenzen
Die Studierenden
- verfügen über grundlegende Kenntnisse der wichtigen Ingenieurkonstruktionen, ihrer Funktionsweise und dem ganzheitlichen Lastabtrag,
- kennen die Funktion und Tragwirkung von einzelnen Bauteilen innerhalb von Gesamtkonstruktionen,
- kennen die Grundlagen wichtiger Konzepte zur Tragwerksanalyse,
- können Tragstrukturen in lineare baustatische Berechnungsmodelle überführen und unterschiedliche Tragsysteme (stattische Systeme) vergleichend analysieren,
- verstehen die wesentlichen Konzepte der Tragwerksanalyse / den Kraftfluss durch Tragwerke und Bauwerke,

Inhalte
a)
Die Lehrveranstaltung behandelt folgende Themen:
- Grundlagen des baustatischen Entwurfsprozesses sowie der Beschreibung prinzipieller Wirkungsweisen von Tragstrukturen (Seile, Stützen, Fachwerke, Balken-, Platten- und Schalentragwerke),
- Theorie der Stabtragwerke für ebene und räumliche schubstarre und schubweiche Stabelemente
- Energieprinzipien
- Methoden zur Berechnung von Zustandslinien statisch unbestimmter Systeme mittels des Kraftgrößenverfahrens

Lehrformen / Sprache
a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch

Prüfungsformen
- Hausarbeit ‘Statik und Tragwerkslehre A - Hausarbeit’ (40 Std., Anteil der Modulnote 0 %, teilweise mit Präsentationen bzw. Abgabegesprächen; Abgabefristen werden am Anfang des Semesters bekanntgegeben; muss vor Teilnahme an der Klausur bestanden sein)
- Klausur ‘Statik und Tragwerkslehre A’ (90 Min., Anteil der Modulnote 100 %)
Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur
- Bestandene Hausarbeit

Verwendung des Moduls

- BSc Bauingenieurwesen
- BSc Umweltingenieurwesen

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = 5 * 100 * FAK / DIV

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Modul Statik und Tragwerkslehre B

Structural Analysis B

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-15</td>
<td>8 LP</td>
<td>240 h</td>
<td>4. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

a) Statik und Tragwerkslehre B

Kontaktzeit

a) 6 SWS (90 h)

Selbststudium

a) 150 h

Turnus

a) jedes SoSe

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr. techn. Günther Meschke

a) Prof. Dr. techn. Günther Meschke

Teilnahmevoraussetzungen

abgeschlossenes Modul Mechanik A

Empfohlene Vorkenntnisse: Mechanik, Statik und Tragwerkslehre A

Lernziele/Kompetenzen

Die Studierenden

• besitzen die Fähigkeiten, baustatische Analysen von Tragwerken gemäß Theorie I. und II. Ordnung durchzuführen,
• kennen die Grundlagen wichtiger klassischer und moderner Konzepte zur Tragwerksanalyse,
• besitzen Grundkenntnisse, um einfache Strukturanalysen mit Hilfe der linearen Finite-Elemente-Methode durchzuführen,
• entwickeln im Rahmen der Hausaufgaben systemanalytisches Denken und das Abstraktionsvermögen sowie Fähigkeiten zur selbständigen Lösung baustatischer Aufgabenstellungen.

Inhalte

a) Die Lehrveranstaltung behandelt folgende Themen:

• Ermittlung von Einflusslinien für Kraftgrößen statisch bestimmter und unbestimmter ebener Tragwerke
• Weggrößenverfahren nach Theorie I. und II. Ordnung
• Grundlagen der Stabilitätstheorie
• Ritz-Verfahren
• Grundlagen der Plattentheorie
• Einführung in die Finite-Elemente-Methode

Lehrformen / Sprache

a) Übung (3 SWS) / Vorlesung (3 SWS) / Deutsch

Prüfungsformen

• Hausarbeit 'Statik und Tragwerkslehre B - Hausarbeit' (55 Std., Anteil der Modulnote 0 %, Abgabefristen werden am Anfang des Semesters bekanntgegeben; muss vor Teilnahme an der Klausur bestanden sein)
• Klausur 'Statik und Tragwerkslehre B' (180 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

• Bestandene Modulabschlussprüfung: Klausur
• Bestandene Hausarbeit
<table>
<thead>
<tr>
<th>Verwendung des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BSc Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an der Gesamtnote [%] = 8 * 100 * FAK / DIV</td>
</tr>
<tr>
<td>FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).</td>
</tr>
<tr>
<td>DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.</td>
</tr>
</tbody>
</table>

| Sonstige Informationen |
Straßenbau und -erhaltung
Pavement Construction and Maintenance

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-19</td>
<td>7 LP</td>
<td>210 h</td>
<td>5. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

a) Straßenbautechnik
b) Straßenplanung
c) Erhaltung

Kontaktzeit
a) 2 SWS (30 h)
b) 2 SWS (30 h)
c) 1 SWS (15 h)

Selbststudium
a) 60 h
b) 60 h
c) 15 h

Turnus
a) jedes WiSe
b) jedes WiSe
c) jedes WiSe

Modulverantwortliche/r und hauptamtlich Lehrende/r

Prof. Dr.-Ing. M. Radenberg
a) Prof. Dr.-Ing. M. Radenberg
b) Prof. Dr.-Ing. M. Radenberg
c) Prof. Dr.-Ing. M. Radenberg

Teilnahmeverzweifältigungen

Lernziele/Kompetenzen

Nach dem erfolgreichen Abschluss des Moduls können die Studierenden

- die für die Planung, den Bau und die Erhaltung von Straßen geltenden technischen Regelwerke anwenden,
- die für den Straßennutzer und den Baulastträger wichtigen physikalisch-mechanischen Eigenschaften einer Straße abschätzen,
- die Kriterien zur Auswahl geeigneter Trassierungsparameter analysieren und beurteilen,
- die unterschiedlichen Bauweisen und deren Besonderheiten unterscheiden sowie die für die Erhaltung relevanten Aspekte Bauweisen spezifisch differenzieren und zuordnen.

Inhalte

a) Die Lehrveranstaltung befasst sich mit den Grundlagen des Aufbaus von Straßenbefestigungen und den verschiedenen Baustoffkriterien und Bautechniken. Im Einzelnen werden behandelt:

- Untergrund und Unterbau
- Standardisierte Bauweisen
- Gesteinskörnungen
- Schichten ohne Bindemittel
- Hydraulische Bindemittel
- Schichten mit Hydraulischen Bindemitteln
- Pflaster- und Plattenbeläge
- Bitumen und Bindemittel
- Asphaltschichten

b) Die Lehrveranstaltung vermittelt die Grundlagen der Straßenplanung und des Straßenentwurfs. Im Einzelnen werden behandelt:

- Fahrdynamische Gesetzmäßigkeiten
- Einflussgrößen Fahrer, Fahrzeug und Straße
Grundzüge der Finanzierung und des Planungsablaufs
- Straßenverwaltung
- Gesetze und Planungsablauf
- Trassierungselemente im Lage- und Höhenplan sowie im Querschnitt.
- Probleme des Naturschutzes und der Landschaftspflege in der Straßenplanung.
- Knotenpunktgestaltung auf der freien Strecke
- Sicherheitsaspekte in der Straßenplanung

c) Die Lehrveranstaltung behandelt die Grundlagen der bautechnischen Erhaltung von Asphalt- und Betonstraßen. Im Einzelnen werden behandelt:
- Straßenschäden und ihre Ursachen
- Zustandserfassung und -bewertung
- Planung der Straßenerhaltung
- Managementsysteme der Straßenerhaltung
- Winterdienst

Lehrformen / Sprache

- a) Übung (1 SWS) / Vorlesung (1 SWS) / Deutsch
- b) Übung (1 SWS) / Vorlesung (1 SWS) / Deutsch
- c) Vorlesung (1 SWS) / Deutsch

Prüfungsformen

- Klausur 'Straßenbau und -erhaltung' (120 Min., Anteil der Modulnote 100 %)
- Optionale Hausarbeit zur Erreichung von Bonuspunkten in Höhe von ca. 20 % der zum Bestehen der Klausur benötigten Punkte für die Klausur (40 Stunden, Abgabefrist wird am Anfang des Semesters bekanntgegeben)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc Bauingenieurwesen

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = 7 * 100 * FAK / DIV

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Strömungsmechanik

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-10/UI-10</td>
<td>5 LP</td>
<td>150 h</td>
<td>3. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

- a) Strömungsmechanik

Kontaktzeit

- a) 4 SWS (60 h)

Selbststudium

- a) 90 h

Turnus

- a) jedes WiSe

Modulverantwortliche/r und hauptamtlich Lehrende/r

- Prof. Dr.-Ing. Rüdiger Höffer

Teilnehmervoraussetzungen

Empfohlene Vorkenntnisse: Kenntnisse in Höherer Mathematik und Mechanik

Lernziele/Kompetenzen

Nach dem erfolgreichen Abschluss des Moduls können die Studierenden

- strömungsmechanische Zusammenhänge aus den unterschiedlichen Themenbereichen erkennen und erläutern, sowie rechnerisch bearbeiten.
- für prinzipielle Problemstellungen des Bau- und Umweltingenieurwesens auf der Basis der gewonnenen Erkenntnisse eigenständig Lösungswege finden, die Problemstellung lösen und die Ergebnisse analysieren.

Inhalte

a) Im Rahmen der Vorlesungen und Übungen werden die notwendigen strömungsmechanischen Grundlagen behandelt und praxisrelevante Problemstellungen und Lösungswege mit Betonung von rechnerischen Verfahren aufgezeigt. Die Vorlesung umfasst die folgenden Themen:

- Statik der Fluide (Hydrostatik, Aerostatik)
- Dynamik vornehmlich inkompressibler, stationärer Strömungen (Erhaltung von Masse, Energie und Impuls)
- Inkompressible, stationäre Rohrströmungen mit Reibung und Energiezufuhr
- Gerinnestromung
- Potentialtheorie
- Turbulente Außenströmung
- Umströmung von Körpern und fluidodynamische Oberflächendrücke
- Kurze Einführung in die numerische Strömungsmechanik

Lehrformen / Sprache

- a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch

Prüfungsformen

- Klausur ‘Strömungsmechanik’ (120 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc Bauingenieurwesen
<table>
<thead>
<tr>
<th>BSc Umweltingenieurwesen</th>
</tr>
</thead>
</table>

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = \(5 \times 100 \times \frac{FAK}{DIV}\)

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Technical English for Civil Engineering I

Technical English for Civil Engineering I

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>W04</td>
<td>5 LP</td>
<td>150 h</td>
<td>5. Sem.</td>
<td>1 Semester</td>
<td>20</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

a) Technical English for Civil Engineering I

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 4 SWS (60 h)</td>
<td>a) 90 h</td>
<td>a) jedes WiSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

M.A. Karin Schmidt

a) M.A. Karin Schmidt

Teilnahmeveruaissetzungen

Empfohlene Vorkenntnisse: Niveaustufe B1 des europäischen Referenzrahmens

Lernziele/Kompetenzen

Die Studierenden

- erlernen die sprachlichen Fertigkeiten und Kenntnisse, die für die Kommunikation mit Geschäftspartnern aus dem Bereich des Bauingenieurwesens in englischsprachigen Ländern bzw. in Englisch als Brückensprache erforderlich sind. Der Schwerpunkt liegt auf den Fertigkeiten Hören, Lesen, Schreiben und Sprechen. Unterstützt und ergänzt wird die Erarbeitung der Inhalte durch die Wiederholung der relevanten grammatischen Strukturen und sprachlichen Besonderheiten auch teilweise im Selbststudium.
- können Strategien und sprachliche Strukturen für die Erarbeitung, schriftliche Ausarbeitung und Präsentation fachspezifischer Fragestellungen umsetzen.

Inhalte

a)
- Anwendung der baubezogenen Fachsprache in realitätsnahen und aufgabenbezogenen Rollenspielen, bei Repräsentationen und im Schriftwechsel
- Präsentationen – Sprache und Struktur von Präsentationen beherrschen, Vorbereitung einer fachspezifischen Präsentation
- Grammatik und Vokabular – bedarfsorientierter Ausbau der Grundlagen, fachspezifische Strukturen, z. B. the tenses, active and passive voice, if clauses

Lehrformen / Sprache

a) Seminar / Englisch / Deutsch

Prüfungsformen

- Klausur 'Technical English for Civil Engineering I' (90 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc Bauingenieurwesen
- BSc Umwelt ingenieurwesen

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = 5 * 100 * FAK / DIV

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
- Medienformen: Power-Point Präsentationen, Handouts, Tafel
- Literatur: Wird in der Veranstaltung bekannt gegeben.
Technical English for Civil Engineering II

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>W05</td>
<td>6 LP</td>
<td>180 h</td>
<td>6. Sem.</td>
<td>1 Semester</td>
<td>20</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

a) Technical English for Civil Engineering II

Kontaktzeit a) 4 SWS (60 h)

Selbststudium a) 120 h

Turnus a) jedes SoSe

Modulverantwortliche/r und hauptamtlich Lehrende/r
M.A. Karin Schmidt

a) M.A. Karin Schmidt

Teilnahmevoraussetzungen
Empfohlene Vorkenntnisse: Niveaustufe B2 des europäischen Referenzrahmens

Lernziele/Kompetenzen

Die Studierenden

• erlernen die Fremdsprachenkenntnisse der Stufe C1 des Europäischen Referenzrahmens
• vertiefen die vier Kommunikationsfertigkeiten – Hören, Lesen, Sprechen und Schreiben – im Bereich Technical English.
• vertiefen den Bereich der mündlichen und schriftlichen Kommunikation.
• werden in die Lage versetzt, mit Blick auf ihre spätere Berufstätigkeit, in der Fremdsprache zu agieren.
• können eine überschaubare Aufgabenstellung konzeptionell in einem vorgesehenen Zeitrahmen in der englischen Fachsprache eigenständig bearbeiten.
• erwerben Fertigkeiten, die für die Realisierung von praxisrelevanten Projekten im internationalen Rahmen wichtig sind. Die Ergebnisse werden in abschließenden Präsentationen durch die Studierenden in Englisch vorgestellt.

Inhalte

Lehrformen / Sprache

a) Seminar / Englisch / Deutsch

Prüfungsformen

• Klausur 'Technical English for Civil Engineering II' (60 Min., Anteil der Modulnote 100 %)
• Hausarbeit 'Technical English for Civil Engineering II' (15 Std., Anteil der Modulnote 0 %, mit Präsentation)
Voraussetzungen für die Vergabe von Credits
- Bestandene Modulabschlussprüfung: Klausur
- Bestandene Hausarbeit mit Präsentation

Verwendung des Moduls
- BSc Bauingenieurwesen
- BSc Umweltingenieurwesen

Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = 6 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
- Medienformen: Power-Point Präsentationen, Handouts, Tafel
- Literatur: Wird in der Veranstaltung bekannt gegeben.
Technische Mikrobiologie

Technical Microbiology

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI-12</td>
<td>5 LP</td>
<td>150 h</td>
<td>6. Sem.</td>
<td>1 Semester</td>
<td>120</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

- a) Technische Mikrobiologie

 Kontaktzeit
 - a) 4 SWS (60 h)

 Selbststudium
 - a) 90 h

Turnus
- a) jedes SoSe

Modulverantwortliche/r und hauptamtlich Lehrende/r

- Prof. Dr.-Ing. Marc Wichern
- a) Prof. Dr.-Ing. Marc Wichern, Dr. rer. nat. Eva Heinz

Teilnahmevoraussetzungen

Empfohlene Vorkenntnisse: Siedlungswasserwirtschaft

Lernziele/Kompetenzen

Die Studierenden

- kennen die wesentlichen Anwendungsgebiete der Technischen Mikrobiologie und die relevanten mikrobiellen Grundlagen und Verfahren,
- entwickeln ein Verständnis für die Zusammenhänge und Einflussfaktoren der Mikrobiologie in der Siedlungswasserwirtschaft und können dieses auf weiterführende Prozesse anwenden,
- können Erkenntnisse aus der Vorlesung auf praktischer Ebene umsetzen und auf konkrete Problemstellungen übertragen,
- verfügen über die Kompetenz selbstständig Versuche zu planen und durchzuführen
- praktizieren erste Ansätze wissenschaftlichen Lernens und Denkens durch das Anfertigen von Versuchsprotokollen und der Analyse der Ergebnisse,
- können die Vorlesungsinhalte durch Selbstrechenaufgaben einzeln oder in Gruppen vertiefen und exemplarische Berechnungen üben.

Inhalte

a)

Die Lehrveranstaltung behandelt das Basiswissen der Mikrobiologie in technischen Systemen:

- Bedeutung der Mikrobiologie und die vielfältigen Anwendungsgebiete mikrobieller Verfahren
- Einführung in die Mikrobiologie und Bakterien
- Mikrobiologische Abbauprozesse (aerob und anaerob)
- Enzyme (Grundlagen, Einflussfaktoren)
- Enzymkinetik (Regulation, Hemmung)
- Abbaubarkeit von Stoffen
- Kinetik mikrobieller Systeme und Reaktortechnik
- Kläranlagen (Aufbau, Funktion, Biomasse, Biofilm, Belebtschlamm, Schlammalter)
- Biologische Abwasserreinigung (Elimination von Kohlenstoffen, Stickstoffverbindungen und Phosphor)
- Aktuelle Entwicklung in der Abwasserreinigung (z.B. mikrobielle Brennstoffzellen)

In den Übungen werden die Vorlesungsinhalte vertieft und beispielhafte Berechnungen u.a. aus der Enzymkinetik geübt.

Das vorlesungsbegleitende Laborpraktikum zur technischen Mikrobiologie soll das in der Vorlesung erlernte Wissen anschaulich verdeutlichen und vertiefen.
<table>
<thead>
<tr>
<th>Lehrformen / Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Praktikum / Übung (3 SWS) / Vorlesung (1 SWS) / Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Klausur 'Technische Mikrobiologie' (60 Min., Anteil der Modulnote 100 %)</td>
</tr>
<tr>
<td>• Hausarbeit 'Technische Mikrobiologie Praktikumsbericht' (15 Std., Anteil der Modulnote 0 %)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bestandene Modulabschlussprüfung: Klausur</td>
</tr>
<tr>
<td>• Praktikum: Praktikumsbericht</td>
</tr>
<tr>
<td>• Präsenz: Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendung des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BSc Bauingenieurwesen</td>
</tr>
<tr>
<td>• BSc Umweltingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil an der Gesamtnote [%] = 5 * 100 * FAK / DIV</td>
</tr>
<tr>
<td>FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).</td>
</tr>
<tr>
<td>DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.</td>
</tr>
</tbody>
</table>

| Sonstige Informationen |
Modul Umwelttechnik und Ökologie

Environmental Engineering and Ecology

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>W06</td>
<td>3 LP</td>
<td>90 h</td>
<td>6. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 2 SWS (30 h)</td>
<td>a) 60 h</td>
<td>a) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

- Prof. Dr.-Ing. Annette Hafner
- a) Prof. Dr.-Ing. Annette Hafner

Teilnahmevoraussetzungen

Lernziele/Kompetenzen

Die Studierenden
- verfügen über grundlegende Kenntnisse der Handlungsbereiche von Umwelttechnik und Umweltplanung,
- können Stoffströme in Ökosysteme charakterisieren
- erhalten Grundlagen der ökologischen Betrachtung von Baukonstruktionen und können Bezüge zu Nachhaltigkeit und Nutzungsdauer bestimmen

Inhalte

a)
Im Rahmen der Vorlesung werden Grundlagen und Strategien der Nachhaltigen Entwicklung dargestellt. Der Schwerpunkt liegt bei:
- globalen, europäischen und regionalen Aspekten (Sustainable Development Goals, Brundlandbericht, Europäische Nachhaltigkeitsstrategie, Nachhaltigkeitsstrategie Deutschland, etc.)
- konzeptionellen und theoretischen Ansätzen (2000-Watt-Gesellschaft, Suffizienzstrategie, Effizienzstrategie, etc.) und deren Anwendbarkeit auf das Bauwesen
- Aspekten von Wasser, Abfall und Verletzlichkeit durch Umweltkatastrophen

Lehrformen / Sprache

- Übung (1 SWS) / Vorlesung (1 SWS) / Deutsch

Prüfungsmöglichkeiten

- Klausur 'Umwelttechnik und Ökologie' (60 Min., Anteil der Modulnote 100 %)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc Bauingenieurwesen

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = 3 * 100 * FAK / DIV

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.
Verkehrsplanung und -technik
Transportation and Traffic Engineering

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-14</td>
<td>8 LP</td>
<td>240 h</td>
<td>3./4. Sem.</td>
<td>2 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
- a) Grundlagen der Verkehrsplanung und Verkehrstechnik
- b) Entwurf von Verkehrsanlagen

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 4 SWS (60 h)</td>
<td>a) 90 h</td>
<td>a) jedes WiSe</td>
</tr>
<tr>
<td>b) 2 SWS (30 h)</td>
<td>b) 60 h</td>
<td>b) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r
Prof. Dr.-Ing. Justin Geistefeldt
a) Prof. Dr.-Ing. Justin Geistefeldt
b) Prof. Dr.-Ing. Justin Geistefeldt

Teilnahmevoraussetzungen
Empfohlene Vorkenntnisse: Kenntnisse in Höherer Mathematik

Lernziele/Kompetenzen
Die Studierenden
- verfügen über grundlegende Kenntnisse der Zusammenhänge in der Verkehrsplanung, der Straßenverkehrstechnik, der Bauleitplanung und dem Entwurf von Stadtstraßen,
- können Theorien, Methoden und empirische Befunde der Verkehrsplanung und Verkehrstechnik reflektieren und kritisch beurteilen,
- sind in der Lage, Standardaufgaben nachzuvollziehen und selbstständig zu bearbeiten,
- können die Qualität von Berechnungsverfahren und Ergebnissen beurteilen und Verfahrensgrenzen einschätzen.

Inhalte
a)
Die Lehrveranstaltung behandelt das Basiswissen der Verkehrsplanung und der Straßenverkehrstechnik. Hierzu gehören:

- Verkehrsanalyse (Erhebungs- und Zählmethoden)
- 4-Stufen-Algorithmus der klassischen Verkehrsplanung:
 1. Verkehrserzeugungsmodelle und Prognoseverfahren
 2. Verkehrsverteilung
 3. Verkehrsauftteilung auf verschiedene Verkehrssysteme
 4. Verkehrsumlegung auf die Strecken eines Netzes
- Kinematische Grundlagen der Verkehrstechnik
- Statistische Grundbegriffe, Warteschlangentheorie
- Verkehrsfluss auf Straßen, Fundamentaldiagramm
- Verkehrstechnische Bemessung von Autobahnen und Landstraßen
- Verkehrstechnische Bemessung von vorfahrtgeregelten Knotenpunkten
- Planung und verkehrstechnische Bemessung von Knotenpunkten mit Lichtsignalanlage
- Verkehrsstieg
- Verkehrssicherheit
- Verfahren der Wirtschaftlichkeitsrechnung für die Infrastrukturplanung
b) Gegenstand der Vorlesung sind der Entwurf und die verkehrsgerechte Gestaltung von Anlagen des Straßenverkehrs einschließlich des öffentlichen Personennahverkehrs, vorwiegend für den städtischen Bereich. Im Einzelnen werden behandelt:

- Flächennutzungsplan und Bebauungsplan
- Querschnitte von Straßen
- Entwurf von plangleichen Knotenpunkten
- Anlagen für den Fuß- und Radverkehr
- Anlagen für den ruhenden Verkehr

Lehrformen / Sprache

a) Übung (2 SWS) / Vorlesung (2 SWS) / Deutsch
b) Übung (1 SWS) / Vorlesung (1 SWS) / Deutsch

Prüfungsformen

- Klausur 'Verkehrsplanung und Verkehrstechnik' (120 Min., Anteil der Modulnote 100 %)
- Optionale Hausarbeit zur Erreichung von Bonuspunkten für die Klausur (30 Stunden, Abgabefrist wird am Anfang des Semesters bekannt gegeben)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur

Verwendung des Moduls

- BSc Bauingenieurwesen

Stellenwert der Note für die Endnote

\[\text{Anteil an der Gesamtnote} \% = 8 \times 100 \times \text{FAK} / \text{DIV} \]

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Vermessungskunde

Fundamentals of Surveying

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>W03</td>
<td>6 LP</td>
<td>180 h</td>
<td>1./2. Sem.</td>
<td>2 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th></th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vermessungskunde</td>
<td>a) 3 SWS (45 h)</td>
<td>a) 75 h</td>
<td>a) jedes WiSe</td>
</tr>
<tr>
<td>b) Feldübungen zur Vermessungskunde</td>
<td>b) 2 SWS (30 h)</td>
<td>b) 30 h</td>
<td>b) jedes SoSe</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r und hauptamtlich Lehrende/r

- a) Prof. Dr. techn. A. Mischke
- b) Prof. Dr. techn. A. Mischke

Teilnahmevoraussetzungen

Lernziele/Kompetenzen

Die Studierenden

- kennen die Terminologie des Vermessungswesens
- kennen die Verfahren der geodätischen Messtechnik soweit, dass sie dem Dialog mit dem Vermessungsingenieur in der berufspraktischen Zusammenarbeit gewachsen sind.
- werden durch die praktischen Übungen befähigt, einfache Vermessungsarbeiten zu überwachen, in Eigenregie durchzuführen und deren Qualität zu beurteilen.
- werden in den Feldübungen zur die Fähigkeit zur Arbeit im Team in besonderem Maße gefördert: Nur wenn jeder Übungsteilnehmer eigenverantwortlich, aber in enger Absprache mit den Kommilitonen und zielgerichtet handelt, kann innerhalb des engen Zeitrahmens ein vorzeigbares, kontrolliertes, richtiges Resultat abgeliefert werden.

Inhalte

a)

Die Vorlesung behandelt die Grundzüge des Vermessungswesens, insbesondere:

- Grundlagen und Aufbau der Koordinaten- und Höhennetze in der Geodäsie
- statistische Methoden zur Beurteilung der Genauigkeit
- Instrumentenkunde
- Methoden der Aufmessung und der Absteckung
- Auswerte- und Rechenverfahren
- Präsentation der Ergebnisse in numerischer und grafischer Form

b)

Praktische Durchführung von einfachen Aufgaben der Lage- und Höhenvermessung:

- Geometrisches Nivelllement
- Winkel- und Streckenmessung
- Bestimmung v. Lagekoordinaten (orthogonal, polar, GNSS)
- Trigonometrisches Höhenbestimmung
- Absteckung nach Koordinaten (Trassen- und Bauabsteckung)
- Tachymetrie, Gebäudeaufnahme

Lehrformen / Sprache
a) Übung (1 SWS) / Vorlesung (2 SWS) / Deutsch
b) Praktikum / Deutsch

Prüfungsformen
- Hausarbeit 'Vermessungskunde' (15 Std., Anteil der Modulnote 100 %, Die Note des Moduls ergibt sich aus der durchschnittlichen Benotung aller vorlesungsbegleitenden Moodle-Tests)
- Praktikum 'Feldübungen zur Vermessungskunde' (30 Std., Anteil der Modulnote 0 %)

Voraussetzungen für die Vergabe von Credits
- Bestandene Modulabschlussprüfung: Hausarbeit
- Bestandenes Praktikum (erfolgreiche Teilnahme)

Verwendung des Moduls
- BSc Bauingenieurwesen

Stellenwert der Note für die Endnote
Anteil an der Gesamtnote [%] = 6 * 100 * FAK / DIV
FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen
Werkstoffchemie
Materials Chemistry

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Credits</th>
<th>Workload</th>
<th>Semester</th>
<th>Dauer</th>
<th>Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>W02</td>
<td>2 LP</td>
<td>60 h</td>
<td>1. Sem.</td>
<td>1 Semester</td>
<td>keine Beschränkung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
- a) Allgemeine Chemie für Studierende der Geowissenschaften, der Biologie und der Physik

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 2 SWS (30 h)</td>
<td>a) 30 h</td>
</tr>
</tbody>
</table>

Turnus
- a) jedes WiSe

Modulverantwortliche/r und hauptamtlich Lehrende/r
- Prof. Dr.-Ing. Rolf Breitenbücher
- a) Prof. Dr. Enrica Bordignon, Prof. Dr.-Ing. Rolf Breitenbücher

Teilnahmeverausschüsse

Lernziele/Kompetenzen

Die Studierenden müssen
- erläutern und implementieren die Grundlagen, welche für das Verhalten von Werkstoffen aufgrund atomarer und molekularer Zusammenhänge verantwortlich sind

Inhalte

a) Die Vorlesungen und Übungen behandeln die Einführung in die Grundlagen der Chemie im Zusammenhang mit baustofflichen Eigenschaften der Materie. Hierzu gehören:

- Atom/ Molekülaufbau, Struktur
- Metalle/ Nichtmetalle
- Säuren, Basen, Salze
- Redoxreaktion

Lehrformen / Sprache

a) Übung (1 SWS) / Vorlesung (1 SWS) / Englisch

Prüfungsformen

- Klausur 'Werkstoffchemie’ (60 Min., Anteil der Modulnote 100 %, Klausur in der zweiten Hälfte des Vorlesungszeitraums im Wintersemester)

Voraussetzungen für die Vergabe von Credits

- Bestandene Modulabschlussprüfung: Klausur (unbenotet)

Verwendung des Moduls

- BSc Bauingenieurwesen

Stellenwert der Note für die Endnote

Anteil an der Gesamtnote [%] = 2 * 100 * FAK / DIV

FAK: Die Gewichtungsfaktoren können dem Inhaltsverzeichnis entnommen werden (s.a. PO 2021 §18).
DIV: Die Werte können dem Inhaltsverzeichnis entnommen werden.

Sonstige Informationen

Achtung! Dieses Modul ist Teil der Vorlesung der Fakultät Chemie „Allgemeine Chemie für Studierende der Geowissenschaften, der Biologie und der Physik“. Die Veranstaltungen für dieses Modul
Modul Werkstoffchemie

(Bauingenieure) finden lediglich über die erste Hälfte des Wintersemesters (Vorlesungsbeginn bis kurz vor Jahresende) statt.

Literatur:

- beliebiges Schulbuch „Allgemeine anorganische Chemie“
- Henning/Knöfel, Baustoffchemie, Verlag für Bauwesen, Berlin 2002
- Scholz, Baustoffkenntnis, Werner-Verlag, Düsseldorf 2003
Bachelorstudiengang "Bauingenieurwesen"
Curriculum

Stand: 22.03.22

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>Ü</td>
<td>P</td>
<td>LP</td>
<td>V</td>
<td>Ü</td>
<td>P</td>
</tr>
<tr>
<td>Pflichtmodule</td>
<td></td>
<td></td>
<td>V</td>
<td>Ü</td>
<td>P</td>
<td>LP</td>
<td>V</td>
<td>Ü</td>
<td>P</td>
</tr>
<tr>
<td>BI-01</td>
<td>Höhere Mathematik A</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>K</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-02</td>
<td>Mechanik A</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>K</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-03</td>
<td>Bauphysik</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>K</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-04</td>
<td>Baustofftechnik</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>K</td>
<td>4</td>
</tr>
<tr>
<td>BI-05</td>
<td>Baukonstruktionen</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>K</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-06</td>
<td>Höhere Mathematik B</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>K</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-07</td>
<td>Mechanik B</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>K</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-08</td>
<td>Ingenieurinformatik</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-09</td>
<td>Höhere Mathematik C</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>K</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-10</td>
<td>Größentechnik</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>K</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-11</td>
<td>Statik und Tragwerkslehre A</td>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-12</td>
<td>Bodenmechanik und Grundbau</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>K</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-13</td>
<td>Hydrologie und Wasserwirtschaft</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>K</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>BI-14</td>
<td>Verkehrsplanung und -technik</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>K</td>
<td>3</td>
</tr>
<tr>
<td>BI-15</td>
<td>Statik und Tragwerkstechnik</td>
<td>8</td>
<td>X</td>
<td>3</td>
<td>3</td>
<td>K</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-16</td>
<td>Eisenbeton- und Spannbetonbau</td>
<td>12</td>
<td>X</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BI-17</td>
<td>Stahl und Holzbau</td>
<td>12</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>K</td>
</tr>
<tr>
<td>BI-18</td>
<td>Baugroßeinheit</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>K</td>
<td>3</td>
</tr>
<tr>
<td>BI-19</td>
<td>Straßenbau und -erhaltung</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>K</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-20</td>
<td>Baubetrieb und Bauverfahrenstechnik</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>S</td>
<td>1</td>
<td>1</td>
<td>K</td>
<td>3</td>
</tr>
<tr>
<td>BI-21</td>
<td>Building Information Modeling</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td></td>
<td></td>
<td>V</td>
<td>Ü</td>
<td>P</td>
<td>LP</td>
<td>V</td>
<td>Ü</td>
<td>P</td>
</tr>
<tr>
<td>BI-BA</td>
<td>Bachelorarbeit</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahlmodule</td>
<td></td>
<td></td>
<td>V</td>
<td>Ü</td>
<td>P</td>
<td>LP</td>
<td>V</td>
<td>Ü</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>Ü</td>
<td>P</td>
<td>LP</td>
<td>V</td>
<td>Ü</td>
<td>P</td>
</tr>
<tr>
<td>Physik</td>
<td>Werkstoffkunde</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>K</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vermessungskunde</td>
<td>2</td>
<td>1</td>
<td>K</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical English I</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>K</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical English II</td>
<td>2</td>
<td>2</td>
<td>K</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Umwelttechnik und Ökologie</td>
<td>1</td>
<td>1</td>
<td>K</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technische Mikrobiologie</td>
<td>1</td>
<td>3</td>
<td>K</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bauvertrags- und Umweltrecht</td>
<td>2</td>
<td>0</td>
<td>K</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arbeitszulassigkeit</td>
<td>2</td>
<td>0</td>
<td>K</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAU für Ingenieure</td>
<td>2</td>
<td>1</td>
<td>K</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Projektarbeit</td>
<td>P</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fremdsprachen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module aus anderen Bachelorstudiengängen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>180</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe Leistungspunkte (ohne Wahlmodule)</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>Summe Leistungspunkte (inkl. Wahlmodule, Beispiel)</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

V / Ü SWS der Vorlesung / Übung

P Prüfungsform der Modulabschlussprüfung:

- K Klausur
- S Studienbegleitende Aufgaben
- P Projektarbeit
Leitfaden für Prüfungen

Beschluss der Prüfungsausschüsse für die Studiengänge Bauingenieurwesen (PO 2021) und Umweltingenieurwesen vom 03.11.2021
Inhalt

1 Einleitung ... 3
2 Prüfungsleistungen .. 3
3 Studienbegleitende Aufgaben .. 3
 3.1 Verpflichtende studienbegleitende Aufgaben ... 3
 3.2 Freiwillige studienbegleitende Aufgaben – Bonuspunkteregelung 3
4 An- und Abmeldung von Prüfungsleistungen ... 4
5 Prüfungsunfähigkeit, Mutterschutz und Nachteilsausgleich .. 4
6 Durchführung von Klausuren .. 5
 6.1 Überprüfung der Teilnahmeberechtigung ... 5
 6.2 Hinweise und Regeln zum Ablauf der Klausur ... 5
 6.3 Meldung der Prüfungsergebnisse .. 6
 6.4 Klausureinsicht .. 6
 6.5 Distance Examinations ... 6
7 Mündliche Ergänzungsprüfungen ... 6
8 Zusätzliche Prüfungsversuche ... 6
9 Projektarbeiten ... 6
10 Bachelor- und Masterarbeiten .. 7
11 Täuschungsversuch ... 7
12 Anerkennung von Prüfungsleistungen .. 7
13 Prüferinnen bzw. Prüfer .. 8
1 Einleitung

Der vorliegende Leitfaden enthält Vorgaben und Empfehlungen für die Organisation von Prüfungen in den Bachelor- und Masterstudiengängen Bauingenieurwesen und Umwelt ingenieurwesen an der Ruhr-Universität Bochum. Er ergänzt die Bestimmungen der geltenden Prüfungsordnungen durch zusätzliche Regelungen, die vom Prüfungsausschuss beschlossen wurden. Als übergeordnete Rechtsvorschriften sind in der jeweils aktuellen Fassung das Hochschulgesetz NRW und die Prüfungsordnung (PO) des jeweiligen Studiengangs zu beachten.

Der Begriff „Lehrstuhl“ wird im Folgenden synonym auch für Arbeitsgruppen und Institute verwendet.

2 Prüfungsleistungen

3 Studienbegleitende Aufgaben

Die Inhalte einer Hausarbeit beschränken sich auf den gelehrten Stoff und sollen vorlesungsbegleitend zu bearbeiten sein. Die für die Bearbeitung einer Hausarbeit erforderliche Stundenzahl soll dem Zahlenwert nach dem Vier- bis Fünffachen der durch das Modul erreichbaren LP entsprechen. Es wird empfohlen, die Aufgaben der Hausarbeit zu parametrisieren (z. B. abhängig von der Matrikelnummer).

3.1 Verpflichtende studienbegleitende Aufgaben

Ist die studienbegleitende Aufgabe eine verpflichtende Studienleistung eines Moduls, so muss sie bis zum Ende des Semesters, in dem das Modul endet, abgegeben werden. Verpflichtende Studienleistungen sind als eigenständige Prüfungsleistung in FlexNow anzumelden. Die Meldung des Prüfungsergebnisses durch die Prüferin bzw. den Prüfer erfolgt ebenfalls über FlexNow.

Eine verpflichtende studienbegleitende Aufgabe kann eine Prüfungsvorleistung (PVL) sein, wenn dies im Modulhandbuch in der jeweils aktuellen Fassung entsprechend vermerkt ist. In diesem Fall muss die Aufgabe frühzeitig, ggf. an verschiedenen, über das Semester verteilten Terminen, spätestens aber 5 Wochen vor dem Klausurzeitraum abgegeben und spätestens 2 Wochen vor dem Klausurzeitraum von der Prüferin bzw. dem Prüfer als „erfolgreich bearbeitet“ bewertet werden, damit die bzw. der Studierende an der Klausur teilnehmen darf. Eine Anmeldung für die Klausur ist erst mit bestandener Prüfungsvorleistung bis zwei Wochen vor dem Prüfungstermin möglich.

3.2 Freiwillige studienbegleitende Aufgaben – Bonuspunkteregelung

Für freiwillige studienbegleitende Aufgaben können bei erfolgreicher Bearbeitung Bonuspunkte für die Bewertung einer Klausur als Modulprüfung gewährt werden. Die Anforderungen für eine erfolgreiche Bearbeitung werden durch die Prüferin bzw. den Prüfer festgelegt, empfohlen wird ein Lösungsgrad von 80 %. Es besteht keine Möglichkeit für eine Nachbesserung nach der Abgabe. Eine durchgesehene und
mit Korrektur eintragungen versehene freiwillige studienbegleitende Aufgabe wird nicht ausgehändigtd, darf aber an einem vereinbarten Termin eingesehen werden.

Um Bonuspunkte für die Modulprüfung zu erhalten, muss die freiwillige studienbegleitende Aufgabe an einem von der Prüferin bzw. dem Prüfer festgelegten Termin (spätestens 5 Wochen vor dem Prüfungstermin) abgegeben und mehr als 2 Wochen vor dem Prüfungstermin als „erfolgreich bearbeitet“ bewertet werden, so dass Studierende ggf. noch eine fristgerechte Abmeldung vornehmen können. Wird die studienbegleitende Aufgabe nicht bis zum festgelegten Termin, aber noch innerhalb der Gültigkeit abgegeben und als „erfolgreich bearbeitet“ bewertet, werden die Bonuspunkte erst in der nächsten Prüfungsphase angerechnet.

Wenn die freiwillige studienbegleitende Aufgabe eines Moduls fristgerecht abgegeben und als „erfolgreich bearbeitet“ bewertet wurde, werden für die Bewertung der zugehörigen Klausur Bonuspunkte in Höhe von ca. 20 % der zum Bestehen der Klausur benötigten Punkte angerechnet. Einmal erreichte Bonuspunkte bleiben für alle folgenden Prüfungsversuche erhalten.

4 An- und Abmeldung von Prüfungsleistungen

Die Anmeldefrist für Prüfungsvorleistungen (PVL) in den Bachelor-Studiengängen endet fünf Wochen vor dem Beginn der regulären Prüfungsphase. Für Klausuren mit PVL ist abweichend von der o. g. Frist eine Anmeldung noch bis zwei Wochen vor dem Prüfungstermin möglich.

Abmeldungen von Prüfungen sind bis eine Woche vor dem jeweiligen Prüfungstermin möglich. Nachträgliche An- oder Abmeldungen sind grundsätzlich nicht möglich.

Abmeldungen von studienbegleitenden Aufgaben sind nicht möglich.

Die An- und Abmeldung zu Prüfungen erfolgt über das Prüfungsverwaltungssystem FlexNow. Wahlmodule einiger anderer Fakultäten (z. B. Sprachkurse) werden mit dem System eCampus verwaltet und müssen nach den Regularien der jeweiligen Fakultät angemeldet werden. Prüfungen in Wahlmodulen, die nicht über FlexNow angemeldet werden können oder in eCampus verwaltet werden, sind durch das entsprechende Formular des Prüfungsamts innerhalb des Anmeldezeitraums anzumelden.

5 Prüfungsunfähigkeit, Mutterschutz und Nachteilsausgleich

Sofern Studierende aus gesundheitlichen Gründen an einer Prüfung nicht teilnehmen können, muss das vollständig auf dem Vordruck des Prüfungsamts ausgefüllte Attest gemäß § 13 (2) der PO unmittelbar nach der Prüfung, spätestens jedoch eine Woche nach dem Prüfungstermin, im Prüfungsamt eingegangen sein. Die Abgabe des Attests ist als Scan (pdf oder jpg) per E-Mail an pruefungsamt-bi@rub.de, persönliche Sprecherzeiten im Prüfungsamt oder auch außerhalb der Öffnungszeiten in den Briefkasten des Prüfungsamts möglich. Sofern das Attest nicht form- und fristgerecht im Prüfungsamt eingegangen oder begründete
Zweifel an der Glaubwürdigkeit des Attests bestehen, z. B. weil der Arzt später als drei Tage nach der Prüfung aufgesucht wurde, wird die versäumte Prüfung mit der Note 5,0 bzw. „nicht bestanden“ bewertet.

Studierende, die aufgrund länger andauernder oder ständiger körperlicher oder psychischer Behinderung nicht in der Lage sind, Prüfungsleistungen ganz oder teilweise in der vorgesehenen Form abzulegen, haben Anspruch auf Nachteilsausgleich nach § 7 (6) der PO. Der Antrag auf Nachteilsausgleich kann formlos mit entsprechenden ärztlichen Nachweisen im Prüfungsamt eingereicht werden.

6 Durchführung von (Präsenz-) Klausuren

6.1 Überprüfung der Teilnahmeberechtigung

Berechtigt zur Teilnahme an einer Klausur sind nur Studierende, die auf den Prüfungslisten vermerkt sind oder denen eine Bescheinigung des Prüfungsamtes ausgestellt wurde, die durch das Prüfungsamt an den Lehrstuhl übermittelt wird und nach der Bewertung der Klausur an das Prüfungsamt zurückzusenden ist. Austauschstudierenden kann in Absprache mit der Prüferin bzw. dem Prüfer die Teilnahme an der Klausur ohne Anmeldung gestattet werden.

Die Berechtigung zur Teilnahme muss vor dem Beginn der Prüfung überprüft werden. Es wird empfohlen, Zugangskontrollen zum Prüfungssaal durchzuführen und nicht berechtigte Studierende abzuweisen, um rechtlich unklare Situationen aufgrund einer Gestattung der Teilnahme an der Klausur trotz fehlender Anmeldung zu vermeiden. Alternativ können personalisierte Deckblätter vorbereitet und vor Beginn der Klausur an Studierende ausgeteilt werden, die zur Teilnahme berechtigt sind.

Nicht auf den Prüfungslisten vermerkte oder durch eine Bescheinigung des Prüfungsamtes berechtigte Studierende haben kein Anrecht, an der Klausur teilzunehmen. Sofern Unklarheiten über die Gründe der fehlenden Prüfungsanmeldung bestehen, darf ihnen aber die Teilnahme gestattet werden, wenn sie die folgende Erklärung unterschrieben haben:

„Ich wurde informiert, dass ich nicht auf der Meldeliste für die Prüfung am ... im Fach ... verzeichnet bin. Ich wünsche trotzdem, an der Prüfung teilzunehmen, da ich davon ausgehe, dazu berechtigt zu sein. Mir ist bekannt, dass die fehlende Prüfungsanmeldung nicht durch mein eigenes Verschulden verursacht wurde. Eine entsprechende Bescheinigung des Prüfungsamtes muss von mir innerhalb einer Frist von 14 Tagen eingeholt und dem zuständigen Lehrstuhl vorgehend werden, damit eine Bewertung meiner Prüfung erfolgt.“

Die Klausurunterlagen dieser Studierenden sind nach der Klausur zu separieren und nicht zu korrigieren. Es muss eine Meldung an das Prüfungsamt erfolgen. Das Prüfungsamt überprüft, ob Gründe für die fehlende Anmeldung vorliegen, die nicht von der/dem Studierenden zu vertreten sind.

6.2 Hinweise und Regeln zum Ablauf der Klausur

Die Prüflinge sollen vor Beginn der Klausur über

- den Ablauf der Klausur, vor allem bei mehreren Klausurteilen,
- den Umfang der ausgeteilten Aufgabenstellungen (sofern die Aufgaben nicht vorgelesen werden),
- die zulässigen Hilfsmittel,
- ggf. die zu verwendenden Stifte (dokumentenecht, nicht zulässige Farben),
- ggf. die ausschließliche Verwendung des ausgeteilten Papiers und
- die Modalitäten für die Abgabe der Klausur und für Toilettengänge während der Bearbeitungszeit

informiert sowie auf folgende Punkte hingewiesen werden:

- Mit dem Antritt der Klausur wird die Prüfungsfähigkeit bestätigt.
- Mobiltelefone oder andere kommunikationsfähige Endgeräte in Griffnähe sowie jede Form der Zusammenarbeit oder Gespräche mit anderen Prüflingen werden als Täuschungsversuch gewertet.

6.3 Meldung der Prüfungsergebnisse

Notenlisten für Prüfungen sind spätestens 4 Wochen nach dem Prüfungstermin – unmittelbar nach erfolgter Bewertung und nicht erst nach der Klausureinsicht oder den mündlichen Ergänzungsprüfungen – an das Prüfungsamt zu übermitteln. Für die nachträgliche Änderung einer bereits gemeldeten Note nach der Klausureinsicht oder der mündlichen Ergänzungsprüfung reicht eine formlose Meldung ans Prüfungsamt.

Das Prüfungsamt berücksichtigt nur Prüfungsergebnisse von ordnungsgemäß angemeldeten Studierenden. Formlose Notenmeldungen und -bescheinigungen für Studierende, die nicht über FlexNow, eCampus oder eine Bescheinigung des Prüfungsamtes angemeldet sind, werden nicht anerkannt. Dies gilt für alle Prüfungen, für die eine Anmeldung über FlexNow oder das Prüfungsamt erforderlich ist.

6.4 Klausureinsicht

6.5 Distance Examinations

Studierende können während eines Auslandssemesters Klausuren auf Antrag als „Distance Examinations“ zeitgleich zu den hiesigen Prüfungsterminen im Ausland absolvieren. Nähere Bestimmungen enthält das Antragsformular.

7 Mündliche Ergänzungsprüfungen

Bei Nichterscheinen aus Krankheitsgründen wird bei Vorlage eines Attests ein Alternativtermin für denselben Prüfungsversuch angeboten. Sollte auch an diesem Termin eine Teilnahme nicht möglich sein, verfällt der Prüfungsanspruch.

8 Zusätzliche Prüfungsversuche

9 Projektarbeiten

10 Bachelor- und Masterarbeiten

Für bestandene Bachelor- und Masterarbeiten ist kein Verbesserungsversuch möglich.

Bachelor- und Masterarbeiten können außerhalb der Fakultät, z. B. in einem Unternehmen, angefertigt werden, sofern ein Lehrstuhl die Bewertung der Arbeit übernimmt. Eine Betreuung und Bewertung durch nicht der Fakultät angehörende Hochschullehrer/in nen bedarf nach § 16 (2) der PO der Zustimmung des Vorsitzenden des Prüfungsausschusses; der formlose Antrag ist von der/dem Studierenden rechtzeitig vor dem Beginn der Arbeit beim Prüfungsamt einzureichen.

11 Täuschungsversuch

Als Täuschungsverseuche bei Klausuren gelten u. a.:
- Mitführen eines Mobiltelefons oder eines anderen kommunikationsfähigen Endgeräts in Griffnähe,
- Benutzung nicht zugelassener Hilfsmittel,
- Zusammenwirken bei der Bearbeitung, z. B. Austausch von bearbeiteten Prüfungsaufgaben,
- Gespräche während der Klausur mit anderen Klausurteilnehmer(inne)n.

Als Täuschungsversuche bei Bachelor- und Masterarbeiten, Projektarbeiten, Semesterarbeiten, Hausarbeiten sowie Seminarbeiträgen gelten insbesondere die Übernahme fremder Texte, Abbildungen oder Ideen ohne korrekte Angabe der Quelle (Plagiat) sowie die Manipulation von Daten.

12 Anerkennung von Prüfungsleistungen

Prüfungsleistungen, die an anderen Hochschulen erbracht wurden, können auf Antrag anerkannt werden, sofern die Äquivalenz durch die Prüferin bzw. den Prüfer des entsprechenden Moduls festgestellt wurde. Das vorausgefüllte und durch die Prüferin bzw. den Prüfer abgezeichnete Formular ist bei der Studienberatung oder im Prüfungsamt einzureichen. Eine Anerkennung von Prüfungsleistungen ist bis spätestens eine Woche vor dem Prüfungstermin, zu dem der oder die Studierende sich erstmalig selbständig angemeldet hat, möglich. Von dieser Frist ausgenommen sind Leistungen, die von eingeschriebenen Studierenden im Rahmen eines Auslandsstudiums erbracht wurden.
13 Prüferinnen bzw. Prüfer

Allgemeine Informationen

Prüfungsamt

Das Prüfungsamt der Fakultät für Bau- und Umweltingenieurwissenschaften ist verantwortlich für die ordnungsgemäße Umsetzung der Prüfungsordnung und die erste Anlaufstelle für alle Prüfungsangelegenheiten. Dazu gehören z.B. die Prüfungsan- und abmeldung, die Verwaltung von Attesten und die Zeugniserstellung.

Kontaktdaten und Öffnungszeiten:
https://www.fbi.ruhr-uni-bochum.de/fbi/studium/pruefungsamt.html.de

Aktuelle Informationen, Prüfungstermine und Formulare stehen auf der Homepage des Prüfungsamtes zur Verfügung. Curricula, Modulhandbücher und Prüfungsordnungen sind unter Download zu finden.

Studienberatung

Die ständige Studienberatung der Studierenden in den Studiengängen Bauingenieurwesen und Umwelttechnik und Ressourcenmanagement / Umweltingenieurwesen erfolgt durch Mitarbeiterinnen und Mitarbeiter der Fachstudienberatung.

Kontaktdaten und Beratungszeiten:
https://www.fbi.ruhr-uni-bochum.de/fbi/studium/Studienberatung.html.de

Die Unterstützung, Beratung und Betreuung der Studierenden soll ein zielorientiertes Studieren ermöglichen.

Im Wesentlichen erfolgt in der Studienberatung eine Betreuung in folgenden Bereichen:

- Studienbewerberinformation
- Studienanfängerbetreuung sowohl im Bachelor- als auch im Masterstudiengang
- Problemfallberatung
- Studienbegleitende Beratung
- Obligatorische Beratungsgespräche für Masterstudierende

Fragen zu den Belangen des Praktikums werden im Praktikumsamt geklärt (praktikumsamt-bi@rub.de). Dort werden auch die anzufertigenden Praktikumsberichte des studienvoraussetzenden Praktikums (8 Wochen) kontrolliert und anerkannt.

Darüber hinaus beraten die Lehrenden im Rahmen regelmäßiger und/oder frei vereinbarter Termine die Studierenden zu Fragen des jeweiligen Faches. Informationen dazu sind über die Webseiten der Lehrstühle zu finden.

Schließlich können sich die Studierenden in Beratungsfragen auch an die Fachschaft des jeweiligen Studiengangs wenden.

Flexnow

Im Wesentlichen erfolgt dort:

- Die Prüfungsan- und abmeldung
- Abruf einer aktuellen Leistungsübersicht (Transcript of Records/ToR)
Moodle
Moodle ist eine digitale Lernplattform, in der über virtuelle Kursräume Informationen und Arbeitsmaterialien zum Studium und zu einzelnen Modulen bereitgestellt werden.

Anmeldung unter www.moodle.rub.de mit LoginID und Passwort

Wichtige Moodle-Kurse:
- Infokurs BI & UTRM/UI
- Einführung in die Online-Lehre an der RUB
- Moodle-Kurse für Erstsemester

Lehrstühle und Arbeitsgruppen

Konstruktiver Ingenieurbau

<table>
<thead>
<tr>
<th>Fachaufgaben</th>
<th>Lehrstuhlverantwortlicher</th>
<th>Raum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baukonstruktionen und Bauphysik</td>
<td>Prof. Dr.-Ing. W. Willems</td>
<td>IC 4-83</td>
</tr>
<tr>
<td>Baustofftechnik</td>
<td>Prof. Dr.-Ing. R. Breitenbücher</td>
<td>IC 6-117</td>
</tr>
<tr>
<td>Bodenmechanik, Grundbau und Umweltgeotechnik</td>
<td>Prof. Dr.-Ing. T. Wichtmann</td>
<td>IC 5-117</td>
</tr>
<tr>
<td>Massivbau</td>
<td>Prof. Dr.-Ing. P. Mark</td>
<td>IC 5-185</td>
</tr>
<tr>
<td>Stahl-, Leicht- & Verbundbau</td>
<td>Prof. Dr. sc. techn. M. Knobloch</td>
<td>IC 5-59</td>
</tr>
<tr>
<td>Tunnelbau, Leitungsbau & Baubetrieb</td>
<td>Prof. Dr.-Ing. M. Thewes</td>
<td>IC 6-127</td>
</tr>
<tr>
<td>Windingenieurwesen & Strömungsmechanik</td>
<td>Prof. Dr.-Ing. R. Höffer</td>
<td>IC 5-127</td>
</tr>
</tbody>
</table>

Computational Engineering

<table>
<thead>
<tr>
<th>Fachaufgaben</th>
<th>Lehrstuhlverantwortlicher</th>
<th>Raum</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Performance Computing</td>
<td>Prof. Dr. A. Vogel</td>
<td>IC 6-155</td>
</tr>
<tr>
<td>Informatik im Bauwesen</td>
<td>Prof. Dr.-Ing. M. König</td>
<td>IC 6-59</td>
</tr>
<tr>
<td>Mechanik – Kontinuumsmechanik</td>
<td>Prof. Dr.-Ing. D. Balzani</td>
<td>IC 03-739</td>
</tr>
<tr>
<td>Mechanik – Materialtheorie</td>
<td>Prof. Dr. rer. nat. K. Hackl</td>
<td>IC 03-711</td>
</tr>
<tr>
<td>Mechanik adaptiver Systeme</td>
<td>Prof. dr.-Ing. T. Nestorović</td>
<td>IC 03-725</td>
</tr>
<tr>
<td>Statik & Dynamik</td>
<td>Prof. Dr. techn. G. Meschke</td>
<td>IC 6-185</td>
</tr>
</tbody>
</table>
Infrastruktur und Umwelt

<table>
<thead>
<tr>
<th>Fachgebiet</th>
<th>Name</th>
<th>E-Mail</th>
<th>Gebäude</th>
<th>Raum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingenieurhydrologie und Wasserdienst</td>
<td>Prof. Dr.-Ing. M. Flörke</td>
<td>hydrology@rub.de</td>
<td>IC 4</td>
<td>185</td>
</tr>
<tr>
<td>Ressourcenschonung & Bauen</td>
<td>Prof. Dr.-Ing. A. Hafner</td>
<td>reb@rub.de</td>
<td>IC 5</td>
<td>159</td>
</tr>
<tr>
<td>Siedlungswasserwirtschaft & Umwelttechnik</td>
<td>Prof. Dr.-Ing. M. Wichern</td>
<td>siwawi@rub.de</td>
<td>IC 4</td>
<td>59</td>
</tr>
<tr>
<td>Umwelttechnik & Ökologie im Bauwesen</td>
<td>Prof. Dr. rer. nat. H. Stolpe</td>
<td>ecology@rub.de</td>
<td>IC 5</td>
<td>153</td>
</tr>
<tr>
<td>Umweltinformatik</td>
<td>Jun.-Prof. Dr. T. van Dijk</td>
<td>thomas.vanDijk@rub.de</td>
<td>IC 4</td>
<td>143</td>
</tr>
<tr>
<td>Verkehrswegbau</td>
<td>Prof. Dr.-Ing. M. Radenberg</td>
<td>verkehrswegbau@rub.de</td>
<td>IC 4</td>
<td>127</td>
</tr>
<tr>
<td>Verkehrswesen – Planung & Management</td>
<td>Prof. Dr.-Ing. J. Geistefeldt</td>
<td>Verkehrswesen@rub.de</td>
<td>IC 4</td>
<td>117</td>
</tr>
</tbody>
</table>

Maschinenbau (UTRM / UI-Studiengang)

<table>
<thead>
<tr>
<th>Fachgebiet</th>
<th>Name</th>
<th>E-Mail</th>
<th>Gebäude</th>
<th>Raum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Sources and Conversion</td>
<td>Prof. Dr.-Ing. Müller</td>
<td></td>
<td>IC 3</td>
<td>51</td>
</tr>
<tr>
<td>Energieanlagen & Energieprozesstechnik</td>
<td>Prof. Dr.-Ing. Scherer</td>
<td></td>
<td>IC 2</td>
<td>117</td>
</tr>
<tr>
<td>Energiesysteme & Energiewirtschaft</td>
<td>Prof. Dr.-Ing. Bertsch</td>
<td></td>
<td>IC 2</td>
<td>185</td>
</tr>
<tr>
<td>Feststoffverfahrenstechnik</td>
<td>Prof. Dr.-Ing. Petermann</td>
<td></td>
<td>IC 3</td>
<td>185</td>
</tr>
<tr>
<td>Fluidverfahrenstechnik</td>
<td>Prof. Dr.-Ing. Grünewald</td>
<td></td>
<td>IC 3</td>
<td>117</td>
</tr>
<tr>
<td>Hydraulische Strömungsmaschinen</td>
<td>Prof. Dr.-Ing. Skoda</td>
<td></td>
<td>IC 3</td>
<td>97</td>
</tr>
<tr>
<td>Laseranwendungstechnik</td>
<td>Prof. Dr.-Ing. Ostendorf</td>
<td></td>
<td>IC 5</td>
<td>621</td>
</tr>
<tr>
<td>Plant Simulation & Safety</td>
<td>Prof. Dr.-Ing. Koch</td>
<td></td>
<td>GB 6</td>
<td>49</td>
</tr>
<tr>
<td>Produktionssysteme</td>
<td>Prof. Dr.-Ing. Kuhlenkötter</td>
<td></td>
<td>GB 02</td>
<td>739</td>
</tr>
<tr>
<td>Regelungstechnik & Systemtheorie</td>
<td>Prof. Dr.-Ing. Mönnigmann</td>
<td></td>
<td>GB 02</td>
<td>117</td>
</tr>
<tr>
<td>Thermische Turbomaschinen & Flugtriebwerke</td>
<td>Prof. Dr.-Ing. di Mare</td>
<td></td>
<td>IC 2</td>
<td>59</td>
</tr>
<tr>
<td>Thermodynamik</td>
<td>Prof. Dr.-Ing. Span</td>
<td></td>
<td>IC 1</td>
<td>27</td>
</tr>
<tr>
<td>Verfahrenstechnische Transportprozesse</td>
<td>Prof. Dr.-Ing. Weidner</td>
<td></td>
<td>IC 3</td>
<td>51</td>
</tr>
<tr>
<td>Verfahrenstechnische Transportprozesse</td>
<td>Prof. Dr.-Ing. Kilzer</td>
<td></td>
<td>IC 3</td>
<td>51</td>
</tr>
<tr>
<td>Werkstoffprüfung</td>
<td>Prof. Dr.-Ing. Pohl</td>
<td></td>
<td>IC 03</td>
<td>223</td>
</tr>
<tr>
<td>Werkstoffwissenschaft</td>
<td>Prof. Dr.-Ing. Eggeler</td>
<td></td>
<td>IC 04</td>
<td>311</td>
</tr>
</tbody>
</table>
Wichtige Adressen

<table>
<thead>
<tr>
<th>Name</th>
<th>Adresse</th>
<th>Telefon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekanat Bau- und Umwelt ingenieurwissenschaften</td>
<td>dekanat-bi@rub.de</td>
<td></td>
</tr>
<tr>
<td>Dekan:</td>
<td>Prof. Dr.-Ing. M. Knobloch</td>
<td></td>
</tr>
<tr>
<td>Geschäftsführung:</td>
<td>Dr. N. A. Čavara</td>
<td></td>
</tr>
<tr>
<td>Geschäftszimmer:</td>
<td>A. Kranl, A. Klauschen, S. Kegel</td>
<td></td>
</tr>
<tr>
<td>Prüfungsamt</td>
<td>pruefungsamt-bi@rub.de</td>
<td></td>
</tr>
<tr>
<td>Prüfungsamt:</td>
<td>R. Pape, A. Kost, B. Schacht</td>
<td></td>
</tr>
<tr>
<td>Studienberatung</td>
<td>studienberatung-bi@rub.de</td>
<td></td>
</tr>
<tr>
<td>Dipl.-Ing. S. Kentgens</td>
<td>IC 02-151</td>
<td></td>
</tr>
<tr>
<td>Dipl.-Ing. N. Ny tus</td>
<td>IC 02-151</td>
<td></td>
</tr>
<tr>
<td>Dr.-Ing. P. Biessey</td>
<td>IC 02-151</td>
<td></td>
</tr>
<tr>
<td>Praktikumsamt</td>
<td>praktikumsamt-bi@rub.de</td>
<td></td>
</tr>
<tr>
<td>Praktikumsamt:</td>
<td>Dr.-Ing. G. Vollmann</td>
<td></td>
</tr>
<tr>
<td>Fachschaf BI</td>
<td>fsr.bauing@rub.de</td>
<td></td>
</tr>
<tr>
<td>Fachschaf BI:</td>
<td>I.C. 03-165</td>
<td></td>
</tr>
<tr>
<td>Fachbezogene Studierendenvertretung</td>
<td>I.C. 03-165</td>
<td></td>
</tr>
<tr>
<td>Fachschaf UTRM/UI</td>
<td>fsr.utrm@rub.de</td>
<td></td>
</tr>
<tr>
<td>Fachbezogene Studierendenvertretung</td>
<td>I.C. 03-163</td>
<td></td>
</tr>
<tr>
<td>Dezentrale Gleichstellung</td>
<td>gleichstellung-bi@rub.de</td>
<td></td>
</tr>
<tr>
<td>Für Studierende:</td>
<td>H. Schülke</td>
<td></td>
</tr>
<tr>
<td>Studierenden-Services-Center</td>
<td>stud-sekretariat@uv.rub.de</td>
<td></td>
</tr>
<tr>
<td>Einschreibungen, Rückmeldungen,</td>
<td>SSC 0-10</td>
<td></td>
</tr>
<tr>
<td>Studierendausweis</td>
<td>Eingeschreibungen, Rückmeldungen, Studierendausweis</td>
<td></td>
</tr>
<tr>
<td>ASTA</td>
<td>service@asta-bochum.de</td>
<td></td>
</tr>
<tr>
<td>Allgemeiner Studiendenausschuss, BAFÖG-Beratung, Rechts- und Sozialberatung, Beglaubigungen</td>
<td>Studierendausweis</td>
<td></td>
</tr>
<tr>
<td>Tel. 22416</td>
<td>Tel. 22416</td>
<td></td>
</tr>
<tr>
<td>AKAFÖ</td>
<td>akafoe@akafoe.de</td>
<td></td>
</tr>
<tr>
<td>Akademisches Förderungswerk: Wohnungs- und Zimmervermittlung</td>
<td>Studierendausweis</td>
<td></td>
</tr>
<tr>
<td>Tel. 11413</td>
<td>Tel. 11413</td>
<td></td>
</tr>
<tr>
<td>Beratungszentrum zur Inklusion Behindter (BZI)</td>
<td>Harry.Baus@akafoe.de</td>
<td></td>
</tr>
<tr>
<td>Studieren mit gesundheitlicher Beeinträchtigung Nachteilsausgleich</td>
<td>SH, Erdgeschoss Raum 040</td>
<td></td>
</tr>
<tr>
<td>Tel. 11530</td>
<td>Tel. 11530</td>
<td></td>
</tr>
<tr>
<td>Inklusionsbeauftragte der Fakultät</td>
<td>rita.pape@rub.de</td>
<td></td>
</tr>
<tr>
<td>Studieren mit gesundheitlicher Beeinträchtigung Nachteilsausgleich</td>
<td>IC 02-153</td>
<td>Tel. 23088</td>
</tr>
<tr>
<td>Psychologische Beratung</td>
<td>psychberatung@rub.de</td>
<td></td>
</tr>
<tr>
<td>Einzelberatungstermine nach Vereinbarung</td>
<td>SSC 1-105</td>
<td></td>
</tr>
<tr>
<td>Tel. 23865</td>
<td>Tel. 23865</td>
<td></td>
</tr>
</tbody>
</table>